
IBM Information Integration

Version 9.5

Application Development Guide for Federated Systems

SC19-1021-01

���

IBM Information Integration

Version 9.5

Application Development Guide for Federated Systems

SC19-1021-01

���

Note

Before using this information and the product that it supports, read the information in “Notices” on page 207.

© Copyright International Business Machines Corporation 2005, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Chapter 1. Overview of Web services

application development 1

Web services and information integration 1

Web services components: provider and consumer 3

Web services fundamentals 4

Preparing the Web services environment on the Web

Application Server 16

Preparing the Web services environment in UNIX

and Windows 16

Preparing the Web services environment in z/OS

or OS/390 17

Preparing the Web services environment in

iSeries 18

Application server for DB2 19

Installing the application server for DB2 in a

federated server 19

Starting and stopping the application server for

DB2 20

Installing Web services provider samples on the

application server for DB2 20

Installing Web applications on the application

server for DB2 21

Preparing to install the Web services provider . . . 23

Installing WORF to work with WebSphere

Application Server Version 5 or later for

Windows and UNIX 24

Installing WORF on z/OS or OS/390 25

Installing the Web services provider software

requirements for Apache Jakarta Tomcat on

UNIX and Windows 25

Installing WORF on Apache Jakarta Tomcat . . 26

Installing the Web services provider software

requirements for Apache Jakarta Tomcat on

iSeries 27

Web services provider software requirements for

OS/390 and z/OS 28

Install the Web services provider examples 28

Installing and deploying WORF examples on

WebSphere Application Server Version 4.0.4 for

z/OS or OS/390 29

Deploying WORF examples on WebSphere

Application Server Version 5.1 or later for

Windows and UNIX 34

Installing and deploying the WORF examples in

iSeries 38

Installing and deploying the WORF examples on

Apache Jakarta Tomcat 39

Migrating Web services to WebSphere Federation

Server Version 9.1 40

Migrating Web applications to work with

WebSphere Federation Server Version 9.1 . . . 40

Introduction to using DB2 as a Web services

provider – WORF 41

Web services provider features 42

Chapter 2. Creating a Web services

provider from a database 53

Defining a group of Web services 54

Defining the web.xml and group.properties files . . 55

Defining the web.xml file 55

Elements required in the web.xml file 56

Defining the group.properties file 57

Parameters for the group.properties file 58

Sample servlet for iSeries 60

Definition of a DADX file 60

Defining the Web service with the document

access definition extension file 61

Syntax of the DADX file 62

A simple DADX file 70

Using overrides in the DADX file 70

Declaring and referencing parameters in the

DADX file 72

DADX operation examples 74

Web service provider operations used with DADX

files 80

XML schema for the DADX file 81

Web services encoding algorithm 83

Web services command reference 83

Chapter 3. Dynamic database queries

that use the Web services provider . . 85

Configuring and running dynamic database queries

as part of Web services provider 86

Dynamic query services-example queries 87

Dynamic query service operations in the Web

services provider 93

db2WebRowSet 98

Chapter 4. Document type definition

repository table 103

DTD definitions for XML Extender 103

XML collection operations 104

Converting a document type definition to an XML

schema 105

Chapter 5. Testing Web services

applications 107

Verifying and testing Web services provider

(WORF) 107

Testing Web services applications – a scenario 107

Testing the Web service 107

Web services samples – PartOrders.dadx . . . 109

Installing a Web application that is used with

the IBM Web Service SOAP provider engine . . 113

Java 2 Enterprise Edition applications 114

Preparing and creating the Web archive file . . 115

Web services provider tracing 116

Publishing your Web services 120

© Copyright IBM Corp. 2005, 2007 iii

Administering and troubleshooting the Web

services provider 120

Using connection pooling to improve

performance 120

Troubleshooting Web services 122

Security in DADX Web services 123

Chapter 6. Web service consumer

functions 125

Installation of the Web services consumer

user-defined functions 126

Web services consumer user-defined functions . . 128

Tracing Web services consumer events 130

Web services consumer—using the WebSphere

Studio User-Defined Function tool 130

How to generate the user-defined functions from

WebSphere Studio 131

Using the Web services consumer UDFs 141

Web services consumer examples 142

Chapter 7. DADX environment checker 143

Running the DADX environment checker 144

DADX environment checker parameters . . . 144

Indicating errors and warnings in the output

text file 145

Error checking by the DADX environment

checker 146

Chapter 8. WebSphere MQ and DB2

User Defined Functions 153

WebSphere MQ messaging interface 154

Message handling and the MQ messaging interface 154

Installing and using the DB2 WebSphere MQ

functions 156

Capabilities of DB2 WebSphere MQ functions . . 158

Commit environment for DB2 WebSphere MQ

functions 161

Configuring the MQ messaging interface 162

WebSphere MQ configuration parameters . . . 163

WebSphere MQ function messages 167

WebSphere MQ messaging Services 168

Messaging Policies 169

Service points 169

Policy definitions 170

Migrating MQ user defined functions from the

repository-based configuration to the

table-based configuration 175

Examples of MQPUBLISH and MQSUBSCRIBE 175

DB2 WebSphere MQ functions as part of the DB2

transaction 176

WebSphere MQ functions within DB2 177

Application-to-application connectivity 180

Tracing WebSphere MQ problems 181

Chapter 9. MQListener in WebSphere

Federation Server 185

Asynchronous messaging in Information

Integration 186

Configuring and running MQListener 187

Configuring MQListener to run in the DB2

environment 187

Configuring WebSphere MQ for MQListener 188

Configuring MQListener 189

Creating a stored procedure to use with

MQListener 190

MQListener examples 191

Parameters used in MQListener configuration . . 193

WebSphere MQ queues used in MQListener . . . 193

Chapter 10. Developing applications

that use federation 195

Developing federated application with Java

technology 195

Advantages of enterprise beans in a federated

system 195

Enterprise beans in a federated system 196

Creating and deploying a container-managed

persistence bean 198

Examples of federated applications 200

Customer bid requests 200

Supplier quote requests 201

Accessing information about the

product 203

Providing comments on the documentation . . . 203

Accessible documentation 205

Notices 207

Trademarks 209

Index 211

iv Application Development Guide for Federated Systems

Chapter 1. Overview of Web services application development

Web services allow you to access data from a variety of databases and internet

locations. After you have accessed the data, a Web service consumer can search,

mine, and then transform the data to use it with a data warehouse for further

analysis.

You can use Web services to enable remote access to DB2® information. Web

services include a set of application functions that perform some useful service on

the behalf of a consumer, or a requester, such as informational or transactional

functions. Web services perform functions, which can be anything from simple

requests to complicated business processes. The consumer generally only needs to

know the Web services description language interface to the Web service. In

addition, the Web service can change usually without affecting the consumer,

unless a change is made in the interface.

The Web service application programmer designs the interaction between a service

provider, and a consumer, or service requester to be completely independent of

platforms and languages. You can use just-in-time integration, because service

requesters can find service providers dynamically. Web services reduce complexity

through encapsulation. Service requesters and providers are concerned only with

the interfaces necessary to interact with each other, not their underlying

implementation. Web services give new life to legacy applications because you can

cast an existing application as a Web service. The basic elements of Web services

include simple object access protocol (SOAP), Universal Description, Discovery,

and Integration (UDDI), and Web services description language (WSDL).

Web services and information integration

Web services provide key innovations for information integration.

Deprecating Web services object runtime framework (WORF)

The Web services objects runtime framework (WORF) is no longer supported and

will not be updated.

In the Data Server Developer Workbench, you now can create Web services

without writing document access definition extension (DADX) files. Use the Data

Server Developer Workbench to create the SQL statements and stored procedures

on which you can base the operations of your Web services. With the Data Server

Developer Workbench you can now easily deploy a Web service

Read the Developing and deploying Web services for more detailed information

about the feature within Data Server Developer Workbench.

To use your existing WORF applications, you must migrate your applications to

Web services within the Data Server Developer Workbench. For the instructions on

migrating to the Web services within the Data Server Developer Workbench, see

Migrating Web applications that were developed for the Web Object Runtime

Framework (WORF).

© Copyright IBM Corp. 2005, 2007 1

https://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.datatools.dsws.tooling.ui.doc/topics/tdswscrtwebsvs.html
https://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.datatools.dsws.tooling.ui.doc/topics/tdswsworf.html
https://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.datatools.dsws.tooling.ui.doc/topics/tdswsworf.html

Extending the functions of stored procedures and SQL

statements

By using the Web services object runtime framework (WORF) and Document

Access Definition Extension (DADX), application servers can serve stored

procedures as Web services to clients. The application servers can be WebSphere®

Application Server or Apache Tomcat.

All SQL statements that a database executes, including stored procedures, can

become SOAP clients and request Web services from SOAP servers. The Web

service then presents the data either as an SQL value or as a table that you can

combine with other SQL data.

Assisting the application developer

Web services promote interoperability. Web services design the interaction between

a service provider and a service requester to be completely platform-independent

and language-independent. The reality of interoperability assumes that the

information technology industry uses a set of standards that provide guidance on

the development and integration of Web services. The Web Services

Interoperability Organization is an open industry effort that is chartered to

promote and ensure Web services interoperability across platforms, applications

and programming languages. The Web Services Interoperability Organization uses

specifications that are developed by the World Wide Web Consortium (W3C) and

the Universal Description, Discovery and Integration (UDDI) organization. Web

services interoperability means that you can create your Web services on a variety

of SOAP or Web Services platforms, including IBM® Web services SOAP provider,

Apache Axis, or Microsoft® Visual Studio.Net.

Web services enable just-in-time integration. As service requesters use service

brokers to find service providers, the discovery takes place dynamically.

Web services reduce complexity through encapsulation. Service requesters and

providers concern themselves with the interfaces necessary to interact with each

other. As a result, a service requester has no idea how a service provider

implements its service, and a service provider has no idea how a service requester

uses its service. Web services encapsulates those details inside the requesters and

providers.

Web services technologies allow you to cast older applications as a Web service.

This means that you can use the applications and packages that are already in

place in your enterprise in interesting new ways. In addition, the infrastructure

associated with the older applications (such as security, directory services, and

transactions) can be wrapped as a set of services as well.

WebSphere Application Server

The WebSphere Application Server is infrastructure software for dynamic

e-business. The WebSphere Studio application development environment provides

the tools that you need to build, deploy, and integrate your e-business.

WebSphere Application Server is a J2EE-compliant application server that provides

an environment for open distributed computing. WebSphere Application Server

provides a middle ground between a client and the resource management systems

2 Application Development Guide for Federated Systems

http://www.ws-i.org/
http://www.ws-i.org/
http://www.w3c.org/
http://www.uddi.org/

(such as databases). It allows clients (such as applets or C++ clients) to interact

with data resources (such as relational databases or WebSphere MQ) and with

existing applications.

You can run Web services on WebSphere Application Server Advanced Edition.

Web services object runtime framework (WORF) provides the run-time support for

invoking document access definition extension (DADX) documents as Web services

over Hypertext Transfer Protocol (HTTP) with IBM Web Service SOAP provider or

Apache Axis 1.2 (or later). WebSphere Application Server 5 or higher, and other

servlet engines support this. WebSphere lets you secure your SOAP Web services.

See the WebSphere documentation on securing SOAP services for more

information.

The IBM Web services SOAP provider supports the Web services security and Web

services transactions that are part of the WebSphere Application Server

environment. For additional information, see WebSphere and .Net Interoperability

Using Web Services .

Web services components: provider and consumer

Web services provide a simple interface between the provider and consumer of

application resources using a Web Service Description Language (WSDL).

Web services provider

A Web services client application can obtain access to a DB2® Version 9 database

with a Web services description language (WSDL) interface. You can create a

WSDL interface to DB2® Version 9 data by using the Web services Object Runtime

Framework (WORF), also known as Document Access Definition Extension

(DADX) files. After you define the operations to access DB2 data with the DADX

file, then you deploy the DADX file and its runtime environment (IBM Web

Service SOAP provider or Apache Axis version 1.2) to a supported Java™ Web

application server environment (Apache Jakarta Tomcat or IBM® WebSphere®

Application Server). After you have the DB2 Web service tested and deployed, any

Web services client can start using the DB2 Web service.

Web services consumer - the user-defined functions

When DB2 Version 9 becomes the consumer, Web services can take advantage of

the optimization that is built within the database. By using SQL statements, you

can consume and integrate Web services data. By using SQL to access Web services

data, you can reduce some application programming efforts because the data can

be manipulated within the context of an SQL statement before that data is returned

to the client application. You can convert an existing WSDL interface into a DB2

table or scalar function by using tools that are provided in WebSphere Studio

version 5 and later. During the execution of an SQL statement, you establish a

connection with the Web service provider, and then you receive a response

document as a relational table or a scalar value.

Web services consumer - the Web services wrapper

Within the federated systems, a Web services wrapper is available to allow users to

access Web services with SQL statements on nicknames and views that invoke Web

services. You can create a Web services wrapper and nicknames that specify input

to the Web service and access the output from the Web service with SELECT

statements.

Chapter 1. Overview of Web services application development 3

http://www.redbooks.ibm.com/redbooks/SG246395/15-42.htm
http://www.redbooks.ibm.com/redbooks/SG246395/15-42.htm

Figure 1 shows the participation by DB2 Version 9 in the Web services

environment:

Web services fundamentals

The basic elements of Web services include simple object access protocol (SOAP),

Universal Description, Discovery, and Integration (UDDI), and Web services

description language (WSDL).

The Web service application programmer designs the interaction between a service

provider, and a consumer, or service requester to be completely independent of

platforms and languages. You can use just-in-time integration, because service

requesters can find service providers dynamically. Web services reduce complexity

through encapsulation. Service requesters and providers are concerned only with

DB2 as a
Web services provider

DB2 as a
Web services consumer

DB2
(JDBC/SQL)

SOAP
(XML/HTTP)

Apache SOAP

SQL statement getRate()

Stored procedure

<Part>
<Number>128</Quanity>
<Price>380.00</Price>
<Part>

WebSphere
application

server
DADx

Internet

DB2
client

Browser
client

SELECT
average (salary) getRate("USA","Canada"), job
FROM staff
GROUP BY job
ORDER BY 1;

DB2
DB2

Figure 1. Web services provider and the SOAP user-defined functions

4 Application Development Guide for Federated Systems

the interfaces necessary to interact with each other, not their underlying

implementation. Web services give new life to legacy applications because you can

cast an existing application as a Web service.

SOAP binding

The SOAP binding requests are XML documents that follow a certain schema.

The simple object access protocol (SOAP) binding uses Hypertext Transfer Protocol

(HTTP) POST. The SOAP binding sends the operation name, input parameters, and

other information as an XML request body.

The SOAP request binding issues a SOAP request over HTTP. SOAP is used as a

message protocol, for request and response messages. The SOAP request specifies

how the request and response message should appear.

SOAP operates on top of an HTTP POST request. HTTP is the transport protocol,

and SOAP is the message protocol. A client application must know how to build

SOAP request documents. The definition and the format of parameters, and other

information is defined in separate Web services description language (WSDL)

document.

Use the following uniform resource locator (URL) to access the SOAP binding

(remember that the your WebAppServer identifier depends on your Web server

configuration):

http://<your WebAppServer>/services/db2sample/HelloSample.dadx/SOAP

There is no operation name in the request. The information is now in the SOAP

request document.

The following example which is for an RPC style, is a dynamic query service using

a SOAP binding.

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >

 <SOAP-ENV:Body>

<ns0:executeQuery

 xmlns:ns0="http://schemas.ibm.com/db2/dqs">

 <queryInputParameter>

 select * from employee

 </queryInputParameter>

 <extendedInputParameter>

 <properties/>

 </extendedInputParameter>

 </ns0:executeQuery>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

 XML element in the example Description

SOAP-ENV=″http://schemas.xmlsoap.org/
soap/envelope/″

The SOAP envelope.

ns0:executeQuery The operation name.

Chapter 1. Overview of Web services application development 5

XML element in the example Description

http://schemas.ibm.com/db2/dqs The actual request document. In the WORF

environment, this is an XML document that

is now an actual Web service SOAP request.

<queryInputParameter>

 select * from employee

 </queryInputParameter>

 <extendedInputParameter>

 <properties/>

 </extendedInputParameter>

The parameters.

The SOAP response is:

<?xml version=’1.0’ encoding=’UTF-8’?><SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <SOAP-ENV:Body>

 <ns1:executeQueryResponse

 xmlns:ns1="http://schemas.ibm.com/db2/dqs"

 SOAP-ENV:encodingStyle="http://xml.apache.org/xml-soap/literalxml">

 <queryOutputParameter>

 ...

 </queryOutputParameter>

 </ns1:executeQueryResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The information that is contained within the SOAP-ENV:Body tag is the actual

response document. In the WORF environment, the response document is an XML

document. This is an actual Web service SOAP response.

Sending additional DB2 client information to DB2 with the SOAP

request

By using the Web services provider, you can send additional information about the

client to DB2 in the SOAP request header. If you are not using WebSphere

Application Server data sources, use the IBM Universal JDBC Driver Provider. If

you do use the WebSphere Application Server data sources, use the WebSphere

Application Server 6.0 or later. On AIX® 64-bit platforms, you need WebSphere

Application Server 6.0.2.3 or later.

Configure the following parameters in the group.properties file:

1. Enable the JDBCAccounting=Header to inform the Web services provider to

expect the DB2 client information in the SOAP header.

2. Define the mapping between the SOAP headers and the DB2 client information

with the following statements:

ClientUserHeader=<QName>

ClientWorkstationHeader=<QName>

ClientApplicationInformationHeader=<QName>

ClientAccountingInformationHeader=<QName>

QName is a qualified name of an XML element in the header. The following

examples show the use of QName:

ClientUserHeader={http://ibm.com}DB2ClientUser

ClientWorkstationHeader={http://ibm.com}DB2ClientWorkstation

ClientApplicationInformationHeader=

6 Application Development Guide for Federated Systems

{http://ibm.com}DB2ClientApplicationInformation

ClientAccountingInformationHeader=

 {http://ibm.com}DB2ClientAccountingInformation

The SOAP header entry in the SOAP request must look like the following example:

<soapenv:Header>

<ns1:DB2ClientUser

 soapenv:mustUnderstand="0"

 xsi:type="xsd:string"

 xmlns:ns1="http://ibm.com">Miguel</ns1:DB2ClientUser>

<ns2:DB2ClientWorkstation

 soapenv:mustUnderstand="0"

 xsi:type="xsd:string"

 xmlns:ns2="http://ibm.com">Miguel Workstation</ns2:DB2ClientWorkstation>

<ns3:DB2ClientApplicationInformation

 soapenv:mustUnderstand="0"

 xsi:type="xsd:string"

 xmlns:ns3="http://ibm.com">

 Miguel Axis Client

 </ns3:DB2ClientApplicationInformation>

<ns4:DB2ClientAccountingInformation

 soapenv:mustUnderstand="0"

 xsi:type="xsd:string"

 xmlns:ns4="http://ibm.com">Miguel</ns4:DB2ClientAccountingInformation>

</soapenv:Header>

Note: Consider using the SOAP binding for Java™ and JavaScript™ clients.

WebSphere® Studio has the functionality to generate Java™ Web service clients.

Web services description language

Web service providers are described by Web services description language (WSDL)

documents. The key to the Web service is the Web services description language

document.

The WSDL is an XML document that describes Web services as a collection of

endpoints, or ports. An endpoint is an addressable location at which a Web service

can be accessed according to the associated binding of a specified interface. One

Web service can have multiple endpoints. The endpoints in a WSDL operate on

messages. A WSDL binding describes how the service is bound to a messaging

protocol, particularly the SOAP messaging protocol. A WSDL SOAP binding can be

either a document-oriented or procedure-oriented (RPC) style binding. A SOAP

binding can also have an encoded use or a literal use.

As Figure 2 on page 8 shows, the Web service provider implements a service and

publishes the interface to some service broker, such as UDDI. The service requester

can then use the service broker to find a Web service. When the requester finds a

service, the requester binds to the service provider so that the requester can use the

Web service. The requester invokes the service by exchanging SOAP (Simple object

access protocol) messages between the requester and provider.

Chapter 1. Overview of Web services application development 7

The SOAP specification defines the layout of an XML-based message. A SOAP

message is contained in a SOAP envelope. The envelope consists of an optional

SOAP header and a mandatory SOAP body. The SOAP header can contain

information about the actual message, such as encryption information or

authentication information. The SOAP body contains the actual message. The

SOAP specification also contains a default encoding for programming language

bindings, which is called the SOAP encoding.

A WSDL document can contain one or more Web services. A service consists of one

or more ports with a binding. The WSDL document can have one or more port

types. A port type has one or more operations with abstract input and output

messages. A binding refers to the process of associating protocol or data format

information with an abstract entity like a message, operation, or a portType. A

binding creates a concrete protocol and data format specification for a particular

port type. A port is an endpoint that is a binding and a Web address.

The example in Figure 3 on page 10 shows the WSDL definition of a simple service

providing stock quotes. The Web service supports a single operation that is named

GetLastTradePrice. The service is deployed using the SOAP 1.1 protocol over

HTTP. The request reads a ticker symbol as input, which is a string data type, and

returns the price, which is a float data type. The type shown in this example is an

XML schema definition. You can use XSD files to associate tables and columns in a

DB2 table to your Web service.

The WSDL style that is specified in the <soap:binding> element is the document

style. The <soap:operation> element provides information for the operation as a

whole. The style attribute in the <soap:operation> element indicates whether the

operation is RPC-oriented (messages containing parameters and return values) or

document-oriented (messages containing documents). The value of this attribute

also affects the way in which the body of the SOAP message is constructed. If the

attribute is not specified, it defaults to the value specified in the <soap:binding>

element. The Web services provider contains samples that are set to use RPC style.

For new applications, you should use document style for maximum

interoperability. In Version 8.2, the Web services provider uses an RPC style with

literal usage and type nodes instead of an RPC style with literal usage and element

nodes. However, there is no change to the SOAP messages from earlier releases of

Web services provider.

Figure 2. Web services as a service oriented architecture

8 Application Development Guide for Federated Systems

The complete example and the WSDL specification is at the W3C site

(http://www.w3.org/TR/2001/NOTE-wsdl-20010315).

Chapter 1. Overview of Web services application development 9

http://www.w3.org/TR/wsdl

<?xml version=’1.0’?>

<definitions name=’StockQuote’

...

<types>

 <schema targetNamespace=’http://example.com/stockquote.xsd’

 xmlns=’http://www.w3.org/2000/10/XMLSchema’>

 <element name=’TradePriceRequest’>

 <complexType>

 <all>

 <element name=’tickerSymbol’ type=’string’/>

 </all>

 </complexType>

 </element>

 <element name=’TradePrice’>

 <complexType>

 <all>

 <element name=’price’ type=’float’/>

 </all>

 </complexType>

 </element>

 </schema>

 </types>

<message name=’GetLastTradePriceInput’>

...

</message>

 <portType name=’StockQuotePortType’>

 <operation name=’GetLastTradePrice’>

 <input message=’tns:GetLastTradePriceInput’/>

 <output message=’tns:GetLastTradePriceOutput’/>

 </operation>

 </portType>

 <binding

 name=’StockQuoteSoapBinding’

 type=’tns:StockQuotePortType’>

 <soap:binding

 style=’document’

 transport=’http://schemas.xmlsoap.org/soap/http’/>

 <operation name=’GetLastTradePrice’>

 <soap:operation

 soapAction=’http://example.com/GetLastTradePrice’/>

 <input>

 <soap:body use=’literal’/>

 </input>

 <output>

 <soap:body use=’literal’/>

 </output>

 </operation>

 </binding>

 <service name=’StockQuoteService’>

 <documentation>My first service</documentation>

 <port name=’StockQuotePort’

 binding=’tns:StockQuoteBinding’>

 <soap:address

 location=’http://example.com/stockquote’/>

 </port>

 </service>

</definitions>

Figure 3. Example of a WSDL

10 Application Development Guide for Federated Systems

Since WSDL documents have a certain structure, Web services developers might

need to use types from external schemas either at the definitions level of the

WSDL document, or the types level of the WSDL document. To use external

schemas, you can use imported schema definitions in your WSDL. WORF supports

two types of imports during the WSDL generation:

An import at the /definitions scope of a WSDL

http://schemas.xmlsoap.org/wsdl/:import

An import at the /definitions/type/schema scope of a WSDL

http://www.w3.org/2001/XMLSchema:import

You can add import definitions by using a group.imports file. If a group.imports

file exists in the resources of the Web service group directory, then WORF includes

the group.imports information in the generated WSDL. The following example is a

group.imports file:

<?xml version=’1.0’ encoding=’UTF-8’?>

<imports xmlns:wsdl=’http://schemas.xmlsoap.org/wsdl/’

 xmlns:xsd=’http://www.w3.org/2001/XMLSchema’>

 <wsdl:import namespace=’http://some/namespace/1’

 location=’schema1.xsd’/>

 <wsdl:import namespace=’http://some/namespace/2’

 location=’schema2.xsd’/>

 <xsd:import namespace=’http://some/namespace/3’

 schemaLocation=’schema3.xsd’/>

 <xsd:import namespace=’http://some/namespace/4’

 schemaLocation=’schema4.xsd’/>

</imports>

This example defines two imports in the /definitions scope that will be added to

the WSDL (schema1.xsd and schema2.xsd). The example defines two imports in

the /definitions/types/schema scope that will be added to the WSDL

(schema3.xsd and schema4.xsd). The WSDL that WORF generates that includes the

import definitions from the above file has the following structure:

<?xml version=’1.0’ encoding=’UTF-8’?>

<definitions>

 <wsdl:documentation xmlns:wsdl=’http://schemas.xmlsoap.org/wsdl/’

 xmlns=’http://schemas.xmlsoap.org/wsdl/’>

 Documentation Text Node

 </wsdl:documentation>

 <import location=’schema2.xsd’

 namespace=’http://some/namespace/2’/>

 <import location=’schema1.xsd’

 namespace=’http://some/namespace/1’/>

 <types>

 <schema>

 <import namespace=’http://some/namespace/4’

 schemaLocation=’schema4.xsd’/>

 <import namespace=’http://some/namespace/3’

 schemaLocation=’schema3.xsd’/>

 <element name=’executeQueryResponse’> </element>

 <element name=’executeQuery’> </element>

 </schema>

 </types>

 ...

</definitions>

If you installed the WORF examples, and have an application called services, then

you can request a Web services description language (WSDL) document for the

service, HelloSample.dadx. Use the following uniform resource locator (URL) to

request the WSDL. The localhost port number, designated here by

<yourWebAppServer> depends on your own current machine:

Chapter 1. Overview of Web services application development 11

http://<yourWebAppServer>/services/db2sample/HelloSample.dadx/WSDL

WORF automatically generates the WSDL document from DADX.

UDDI business registries

Register your Web service in a Universal Discovery, Description, and Integration

(UDDI) business registry.

The recommended practice is to split the WSDL document into a service instance

document and a binding document. To learn more about UDDI and best practices,

see UDDI Best Practices.

The service instance document contains the address from which you deploy the

service and it imports the binding document. Many service instances might refer to

a common binding document. You register the binding document in UDDI as a

reusable tModel. The tModel is the information about a specification for a Web

service.

Request the WSDL service instance document with the uniform resource locator

(URL). The localhost port number, designated here by <yourWebAppServer> depends

on your own current machine:

http://<yourWebAppServer>/services/db2sample/HelloSample.dadx/WSDLservice

Request the WSDL binding document with the URL:

http://<yourWebAppServer>/services/db2sample/HelloSample.dadx/WSDLbinding

WSDL for UDDI registration

The Universal Description, Discovery, and Integration (UDDI) best practices

document explains the use of Web services description language (WSDL) with

UDDI registries. You should split the WSDL document into two parts; the

deployment, and the reusable parts.

The deployment part includes the <service> element which contains the URLs

where the service is deployed. The deployment part imports the reusable part

which contains the other top-level WSDL elements.

The reusable part corresponds to a UDDI <tModel> element. The deployment part

corresponds to a UDDI <businessService>. Within the <businessService> element,

each WSDL <port> element corresponds to a UDDI <bindingTemplate> element.

To learn more about UDDI and Web service registration, see the Universal

Description, Discovery, and Integration of Business for the Web site.

The deployment part

To generate the deployment part of the WSDL document, submit a URL with the

WSDLservice command. The syntax is:

http://yourWebAppServer:port/webapp_name/

 group_name/DADX_file.dadx/WSDLservice

Here is an example:

http://yourWebAppServer/sales_db/part_orders.dadx/WSDLservice

12 Application Development Guide for Federated Systems

http://www.uddi.org/bestpractices.html
http://www.uddi.org/
http://www.uddi.org/

The reusable part

To generate the reusable part of the WSDL document, submit a URL with the

WSDLbinding command. The syntax is:

http://yourWebbAppServer:port/webapp_name/

 group_name/DADX_file.dadx/WSDLbinding

Here is an example:

http://yourWebAppServer/sales_db/part_orders.dadx/WSDLbinding

The above example deals with the case in which the service implementer creates a

Web service that is unique to a company. One of the usage scenarios that UDDI is

designed to handle is one where a standards body or vendor defines a Web service

interface tModel. Then, service implementers use the Web service. For example, the

airline industry might define a Web service that provides flight schedules that

airlines can implement. UDDI allows users to search for all registered services that

implement a given tModel. Then, a travel planning application can locate all the

airline flight schedule services.

The <implements> tag

Use the DADX <implements> element to declare that the service implements a

Web Service described by a reusable WSDL document that is defined elsewhere.

An example of an <implements> element is shown in Figure 4 on page 14.

Chapter 1. Overview of Web services application development 13

The following example shows how the <implements> tag is used in a DADX file:

<?xml version="1.0" encoding="UTF-8"?>

<schema targetNamespace="http://schemas.ibm.com/db2/dxx/dadx"

 ...

 elementFormDefault="qualified">

 <import namespace="http://schemas.xmlsoap.org/wsdl/"

 schemaLocation="wsdl.xsd"/>

 <element name="DADX">

 <annotation>

 <documentation>

 Defines a Web Service.

 The Web Service is described by an optional

 WSDL documentation element.

 </documentation>

 </annotation>

 <complexType>

 <sequence>

 <element ref="wsdl:documentation" minOccurs="0"/>

 <element ref="dadx:implements" minOccurs="0"/>

 <element ref="dadx:result_set_metadata" minOccurs="0"

 maxOccurs="unbounded"/>

 <element ref="dadx:operation" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 ...

 <element name="implements">

 <annotation>

 <documentation>

 Defines the namespace and location of a set of WSDL bindings

 defined elsewhere. This information is imported into the

 WSDL document generated for this Web Service.

 </documentation>

 </annotation>

 <complexType>

 <attribute name="namespace" type="anyURI" use="required"/>

 <attribute name="location" type="anyURI" use="required"/>

 </complexType>

 </element>

...

</schema>

Figure 4. Element <implements>

14 Application Development Guide for Federated Systems

XML schema definitions

An XML schema defines the data types used in the Web service interface.

Request the XML schema definitions for the service by the uniform resource

locator (URL). The localhost port number, designated here by <yourWebAppServer>

depends on your own current machine:

http://<yourWebAppServer>/services/db2sample/HelloSample.dadx/XSD

WORF generates an XML schema file similar to the example in Figure 6 on page

16.

<?xml version="1.0"?>

<DADX xmlns="http://schemas.ibm.com/db2/dxx/dadx"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xhtml="http://www.w3.org/1999/xhtml">

<documentation>

 Provides queries for part order information at myco.com.

 This Web Service is compliant with the Part Ordering Industry

 Association standard.

 </documentation>

<implements namespace="http://www.poia.org/PartOrders.wsdl"

 location="http://www.poia.org/PartOrders.wsdl"/>

<operation name="findAll">

<documentation%gt;

Returns an order with its complete details.

</documentation>

 ...

 </operation>

...

Figure 5. Example DADX file using an implements tag

Chapter 1. Overview of Web services application development 15

The DB2® XML Extender can use document type definitions (DTDs) to define the

schema of XML documents, so the WORF run-time automatically translates the

DTD into an XML Schema. For example, if the order.dtd DTD defines an XML

document, then you can use the following URL to request the translation into XML

Schema:

 http://<yourWebAppServer>/services/db2sample/order.dtd/XSD

Preparing the Web services environment on the Web Application

Server

You can deploy Web applications by using the WebSphere Application Server. You

must ensure that the required software is available and the configurations are

complete for the specific computer environment that you are using.

A developer creates the files comprising a Web application, and then assembles the

Web application components into a Web module. Then, a developer in a

unit-testing environment or an administrator in a production environment, installs

the Web application on the server.

Preparing the Web services environment in UNIX and

Windows

Prepare the environment to use Web services with DB2 and federated server in

UNIX® and Windows®.

Before you begin

Ensure that you have the required software installed.

Procedure

To prepare the Web services environment in UNIX and Windows:

<?xml version="1.0" encoding="UTF-8"?>

<schema

 targetNamespace="http://localhost:8080/services/sample/HelloSample.dadx/XSD"

 xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:tns="http://localhost:8080/services/sample/HelloSample.dadx/XSD">

 <element name="listDepartmentsResult">

 <complexType>

 <sequence>

 <element maxOccurs="unbounded" minOccurs="0" name="listDepartmentsRow">

 <complexType>

 <sequence>

 <element name="DEPTNO" type="string"/>

 <element name="DEPTNAME" type="string"/>

 <element name="MGRNO" nillable="true" type="string"/>

 <element name="ADMRDEPT" type="string"/>

 <element name="LOCATION" nillable="true" type="string"/>

 </sequence>

 </complexType>

 </element>

 </sequence>

 </complexType>

 </element>

</schema>

Figure 6. The XML schema definition file

16 Application Development Guide for Federated Systems

1. Stop any services that use DB2 (such as WebSphere Application Server).

2. Stop DB2.

3. Optional: For advanced mapping control between XML and relational data,

install the DB2 XML Extender.

4. For DB2 Universal Database versions earlier than Version 8, select Java

Database Connectivity (JDBC) 2.0. Run the C:\SQLLIB\java12\usejdbc2.bat file,

assuming that you installed DB2 in C:\SQLLIB\ when using a Windows

environment.

5. Restart DB2.

6. Verify the DB2 installation by creating the DB2 SAMPLE database, if it is not

already created.

7. Start WebSphere Application Server Advanced Edition 5.1 or later from its

install directory. These instructions assume that you installed WebSphere

Application Server in a Windows environment in C:\WebSphere\Appserver.

Preparing the Web services environment in z/OS or OS/390

Prepare the environment to use Web services with DB2 and the federated server in

z/OS® or OS/390®.

Before you begin

Ensure that you have the required software installed.

Procedure

To prepare the Web services environment in z/OS or OS/390:

1. Create a new directory to store application extensions, if one does not already

exist.

2. Set the APP_EXT_DIR environment variable in your designated J2EE server

instance to this application extensions directory

3. Add the following JAR files to the application extensions directory:

v xerces.jar: This file is in the IBM XML Toolkit for z/OS which you can

download from http://www.ibm.com/servers/eserver/zseries/software/
xml/

v mail.jar: This file is in JavaMail.

v activation.jar: This file is located in the Java Beans Activation Framework.

v j2ee.jar: Download this file from http://java.sun.com/products

v qname.jar: Download this file from http://java.sun.com/products

v wsdl4j.jar: Download this file from http://oss.software.ibm.com/
developerworks/projects/wsdl4j

4. Verify the configuration of the J2EE server instance with the following steps:

a. Ensure that the soap.jar included with WebSphere Application Server is part

of your CLASSPATH.

b. Add the following settings to the jvm.properties file of the J2EE server

instance:

com.ibm.ws390.server.classloadermode=2

com.ibm.ws.classloader.ejbDelegationMode=false

5. Restart the J2EE server.

Chapter 1. Overview of Web services application development 17

http://www.ibm.com/servers/eserver/zseries/software/xml/
http://www.ibm.com/servers/eserver/zseries/software/xml/
http://java.sun.com/
http://java.sun.com/
http://oss.software.ibm.com/developerworks/projects/wsdl4j
http://oss.software.ibm.com/developerworks/projects/wsdl4j

Preparing the Web services environment in iSeries

Prepare the environment to use Web services with DB2 and a federated server in

iSeries™.

Before you begin

Ensure that you have the required software installed.

Procedure

To prepare the Web services environment in iSeries:

 1. Create the SAMPLE database from interactive SQL with the following

command:

CALL QSYS/CREATE_SQL_SAMPLE(’SAMPLE’)

 2. For advanced mapping control between XML and relational data, install the

DB2 XML Extender. You can verify that you have DB2 XML Extenders on

your system by issuing the CL command, GO LICPGM. For DB2 for iSeries,

V5R2, if you have DB2 XML Extenders, the following entries display as a

result of the GO LICPGM command:

v 5722DE1 *COMPATIBLE DB2 Extenders

v 5722DE1 *COMPATIBLE DB2 Text Extender

v 5722DE1 *COMPATIBLE DB2 XML Extender

v 5722DE1 *COMPATIBLE Text Search Engine
 3. Enable DB2 XML extenders with the following CL command:

CALL PGM(QDBXM/QZXMADM) PARM(enable_db LOCALRDB)

(LOCALRDB is the *LOCAL database name in the relational database directory.)

 4. To work with the relational database entries, issue the following CL command:

WRKRDBDIRE

 5. Optional: If you use the document type definitions (DTDs) that are in the

sample files, run the setup-dxx.cmd script.

 6. Stop any services that use DB2 (such as WebSphere Application Server).

 7. For DB2 Universal Database™ versions earlier than Version 8, select Java

Database Connectivity (JDBC) 2.0. Run the C:\SQLLIB\java12\usejdbc2.bat

file, assuming that you installed DB2 in C:\SQLLIB when using a Windows

environment.

 8. When using stored procedures, authorize the *PGM object that is created for

each CREATE PROCEDURE statement. When you use Java™ stored

procedures, you should authorize the user (or *PUBLIC) to the Java class file.

When you use Java stored procedures, store all of the class files in the

following directory:

 /QIBM/UserData/OS400/SQLLib/Function

Make sure that Spserver.class is in this directory. The stored procedure

SAMPLE.TESTRS is the only stored procedure that is an SQL stored

procedure. It has no dependency on the Java class.

 9. To define the sample stored procedures and catalog them in DBD:

a. From the command line, specify the following:

>qsh

b. From the command line, specify the following:

18 Application Development Guide for Federated Systems

>cd /QIBM/UserData/WebASAEs4/worf/

 installedApps/servicesApp.ear/services.war/WEB-INF/

 classes/groups/dxx_sample

where WebASAEs4 is the version of WebSphere®, and worf is the name of

the WebSphere instance.

c. From the command line, specify the following:

>db2 -f Spcreate.db2

10. To remove the stored procedure definitions, issue the following command:

 >db2 -f Spdrop.db2

11. Start WebSphere Application Server Advanced Edition 4.01 or 5.0, assuming

that you installed WebSphere Application Server in C:\WebSphere\Appserver.

Application server for DB2

The DB2 Embedded Application Server is an application server packaged with the

DB2 product. This component is included to provide a means to run the web

applications that are supplied with the DB2 server product without the need to

purchase a separate application server.

The DB2 Embedded Application Server enables you to run the Web applications

supplied with DB2 without needing to purchase an application server. In Version 8,

the DB2 Embedded Application Server was also referred to as the application

server for DB2 UDB.

Installing the application server for DB2 in a federated server

DB2, provides an embedded application server, referred to as the application server

for DB2. If you use the application server for DB2, you do not need to install a

separate application server to run your DB2 Web applications on Windows, Linux®,

AIX, and Solaris.

Before you begin

v DB2 Version 9 or later

v At least one DB2 instance must exist

v Issue the following command for your environment:

<db2instance path>/sqllib/db2profile (for Windows)

. <db2instance path>/sqllib/db2profile (for UNIX systems)

Restrictions

You can have only one DB2 application server in a system that has one or multiple

DB2 instances.

About this task

Application servers enable enterprises to develop, deploy, and integrate

next-generation e-business applications. You can use application servers as tools to

administer your Web applications.

Procedure

To install the application server for DB2:

1. Insert the Java application development and Web administration tools supplement for

DB2 CD. DB2 provides this CD with the DB2 installation package.

Chapter 1. Overview of Web services application development 19

2. Type the following command from the command line:

db2appserverinstall

 -asroot path

 -hostname name

-asroot

The absolute path for the application server installation.

-hostname

The name of the host system.

Starting and stopping the application server for DB2

You can start and stop the application server for DB2 from the bin subdirectory of

the application server for DB2 directory. You can also use a stored procedure

named DB2EAS.SERVER to start and stop the application server.

Procedure

To start and stop the application server for DB2:

1. To start the application server for DB2, type the following command from the

command line:

startServer serverName

The command requires the following parameter:

serverName

The name of the application server that you want to start. The server

name must be server1.
2. To stop the application server for DB2, type the following command from the

command line:

stopServer serverName

The command requires the following parameter:

serverName

The name of the application server that you want to stop. The server

name must be server1

You must use port number 20000 for the Web services that are running under the

application server for DB2. Invoke the WORF samples with the following URL:

http://localhost:20000/services

In this example, services is the context root that you specify when you install the

Web services.

Refer to WebSphere Application Server System Administration for information on

deploying and managing applications so that you can deploy the WORF samples

with the application server for DB2. After you deploy the WORF samples with the

application server for DB2, you can access the WORF test page from your browser.

Installing Web services provider samples on the application

server for DB2

You can install and configure the Web services provider, the Web services provider

applications, including the Web services provider samples, and JDBC providers

and enable and disable a trace on an application server for DB2 by using the

worf_eas_admin.jacl script.

20 Application Development Guide for Federated Systems

Before you begin

The application server for DB2 must be running.

About this task

The worf_eas_admin.jacl script is included in the bin directory of the dxxworf.zip

file. The examples assume that you are familiar with deploying the Web services

provider examples.

Procedure

To install the Web services provider samples on the application server for DB2:

1. Issue the following command to install a JDBC provider that is used by the

Web services provider samples Web application. The command syntax uses the

Windows notation:

$appserv_install_dir\bin\wsadmin.bat -f worf_eas_admin.jacl configureJDBC

-name db2jdbc

-classpath "C:\\SQLLIB\\java\\db2java.zip"

-iClassName COM.ibm.db2.jdbc.app.DB2Driver

From the command line in Windows, use either two backslashes (\\) or one

forward slash (/) as the directory delimiter.

2. Issue the following command to install the Web services provider samples. The

command syntax uses the Windows notation:

$appserv_install_dir\bin\wsadmin.bat -f worf_eas_admin.jacl installApp

-warPath "C:\\worf\\lib\\axis-services.war"

-contextRoot services

-appName WorfAxis

Installing Web applications on the application server for DB2

You can install and configure the Web services provider, the Web services provider

applications, including the Web services provider samples, and JDBC providers

and enable and disable a trace on an application server for DB2 by using the

worf_eas_admin.jacl script.

Before you begin

The application server for DB2 must be running.

About this task

The worf_eas_admin.jacl script is included in the bin directory of the dxxworf.zip

file. The examples assume that you are familiar with deploying the Web services

provider examples.

Procedure

To install the Web applications on the application server for DB2:

Issue the following command to install and configure Web Services provider Web

applications:

worf_eas_admin.jacl keyword

Chapter 1. Overview of Web services application development 21

Keyword Parameter

installApp

Installs a Web application that is

based on the parameters

warPath

The path to the Web archive (WAR)

package.

contextRoot

The context root of the application

in the application server for DB2.

appName

The name of the application in the

application server for DB2. The

name must not contain any blank

characters.

configureJDBC

Configures a JDBC provider. The

parameters are required.

name The name of the JDBC provider in

the application server for DB2.

classPath

The CLASSPATH to the Java

archive (JAR) packages of the JDBC

driver.

iClassName

The name of the implementation

class.

uninstallApp

Removes an installed application.

You must provide the name of the

application in the application server

for DB2.

None

removeJDBC

Removes a JDBC provider. You

must provide the name of the JDBC

provider in the application server

for DB2.

None

enableTrace

Enables the trace for the application

server for DB2. The application

server for DB2 must be running.

None

disableTrace

Disables the trace for the

application server for DB2. The

application server for DB2 must be

running.

None

Examples of worf_eas_admin.jacl

v The following example shows the installApp keyword:

$appserv_install_dir\bin\wsadmin.bat -f worf_eas_admin.jacl installApp

-warPath "C:\\My Files\\WORF\\axis-services.war"

-contextRoot services

-appName WorfAxis

From the command line in Windows, use either two back slashes (\\) or one

forward slash (/) as the directory delimiter.

22 Application Development Guide for Federated Systems

v The following example shows the configureJDBC keyword:

$appserv_install_dir\bin\wsadmin.bat -f worf_eas_admin.jacl configureJDBC

 -name db2jcc

 -classPath "C:\\SQLLIB\\java\\db2jcc.jar;

 C:\\SQLLIB\\java\\db2jcc_license_cu.jar;

 C:\\SQLLIB\\java\\db2jcc_license_cisuz.jar"

 -iClassName com.ibm.db2.jcc.DB2Driver

v The following example shows the uninstallApp keyword:

$appserv_install_dir\bin\wsadmin.bat -f worf_eas_admin.jacl uninstallApp

 -appName WorfAxis

v The following example shows the removeJDBC:

$appserv_install_dir\bin\wsadmin.bat -f worf_eas_admin.jacl removeJDBC

 -name db2jcc

v The following example shows the enableTrace:

$appserv_install_dir\bin\wsadmin -f worf_eas_admin.jacl enableTrace

v The following example shows the disableTrace:

$appserv_install_dir\bin\wsadmin -f worf_eas_admin.jacl disableTrace

Preparing to install the Web services provider

Determine the capacity of your system and plan for the software that needs to be

installed for your application programming interfaces and Web service

applications.

Packaging: dxxworf.zip

In addition to being packaged with IBM WebSphere Federation Server, the Web

services provider is also part of DB2 Version 9. The Web services provider is in the

following path in DB2 Version 9: <DB2 installed location>\sqllib\samples\
webservices\dxxworf.zip.

Operating systems

You can install the Web services provider on any of the following operating

systems:

v Windows NT®

v Windows 2000

v Linux

v AIX

v Solaris Operating Environment

v OS/390 Version 2.8 or later

v z/OS Version 1.1 or later

Database environments

You can use the following database environments:

v IBM DB2 Version 9 or later

http://www.ibm.com/software/data/db2. DB2 includes DB2 XML Extender,

which is needed for advanced mapping control between XML and relational

data.

v DB2 Universal Database for OS/390 Version 8.

v DB2 Universal Database for z/OS.

Chapter 1. Overview of Web services application development 23

http://www.ibm.com/software/data/db2/

v Informix® Dynamic Server (IDS) Version 9.3

Web server

v WebSphere Application Server Advanced Edition Version 6.http://
www.ibm.com/software/webservers/appserv/

v Apache Jakarta Tomcat Version 3.3.1 through 4.0.3 or later.http://
www.apache.org/

v Application server for DB2.

Installing WORF to work with WebSphere Application Server

Version 5 or later for Windows and UNIX

You can install the Web services provider on Windows or UNIX to work with

WebSphere Application Server Version 5 or later.

Before you begin

Install WebSphere Application Server on your work station in a path such as

C:\WebSphere\Appserver (in a Windows environment).

Procedure

To install WORF Version 9:

1. Unzip dxxworf.zip to a directory, such as C:\worf so that the directory has the

following contents:

readme.html

lib\websphere-services.war and lib\axis-services.war

Sample Web applications that contain Web services which use WORF.

lib\worf.jar

WORF library. You install this on the class path of the servlet engine.

lib\worf-servlets.jar

schemas\

XML schemas for the DADX and namespace tables (NST) XML files,

including wsdl.xsd, db2WebRowSet.xsd, and dadx.xsd

tools\ The tools directory contains the DAD and DADX checker tools.
2. Verify that the directory of the server you are using (such as WebSphere

Application Server) contains the appropriate Web services engine jar files. If the

files are not in the directory, copy the jar files from the directory that contains

the Apache Axis or IBM Web Service SOAP provider files so that you can

enable the appropriate Web services engine.

a. If you are using the Apache Axis framework, copy axis.jar to

c:\WebSphere\AppServer\lib. Then, copy the contents of axis/lib to

c:\WebSphere\AppServer\lib to access the other Apache Axis JAR files.
3. Copy worf.jar to C:\WebSphere\AppServer\lib.

4. If your WebSphere server is a release earlier than WebSphere 5.0.2, you must

download a file from http://java.sun.com/xml/downloads/saaj.html, named

saaj.jar. Copy saaj.jar to C:\WebSphere\AppServer\lib.

5. Start the WebSphere Application Server.

6. Open the Administrator’s console by selecting Start → Programs → IBM

WebSphere → Administrator’s Console.

24 Application Development Guide for Federated Systems

http://www.ibm.com/software/webservers/appserv/infocenter.html
http://www.ibm.com/software/webservers/appserv/infocenter.html
http://www.apache.org/
http://www.apache.org/

7. Configure WebSphere to run with your DB2 environment:

a. From the left navigation pane, click Servers → Application Servers.

b. Click on the name of your server in the right content pane.

c. Click Process Definition → Java Virtual Machine.

d. On the Configuration page, specify the class path as the path to the Java

database information. If you installed DB2 in directory sqllib\, and you use

the group.properties file that comes with the WORF samples, the following

example is a valid path:

C:\SQLLIB\java\db2java.zip

e. Click Apply or OK.

f. Save the configuration.
8. Stop the WebSphere Application Server.

Installing WORF on z/OS or OS/390

You can install the Web services provider on z/OS.

Procedure

To install the Web services provider on z/OS:

1. Download and unpax dxxworf.pax to an empty directory, such as

/u/USER/worf/. Unpax the file by using the following command:

pax -rvf dxxworf.pax

After you expand the file, the directory has the following contents:

v readme.txt

v lib/websphere-services.war and lib/axis-services.war - sample Web

applications that contain Web services which use WORF. The commands and

instructions that are included here refer to services.war or services.ear. Please

use the correct SOAP files for the SOAP engine you choose to run. For

example, an example might refer to a services.war file, but if you installed

the IBM Web Service SOAP provider engine, then the file is

websphere-services.war.

v lib/worf.jar - WORF library.

v lib/worf-servlets.jar

v schemas/ - XML schemas for the DADX and NST XML files

v tools/ – The tools directory contains the DAD and DADX checker tools.
2. Copy worf.jar to the application extensions directory of your J2EE server

instance.

3. Start (or restart) the J2EE Server.

Installing the Web services provider software requirements for

Apache Jakarta Tomcat on UNIX and Windows

This topic describes the steps for installing the Web services provider for Apache

Jakarta Tomcat.

Before you begin

v Install the DB2 XML Extender for the advanced mapping control between XML

and relational data. Verify the installation by creating the DB2 SAMPLE

database. Refer to http://www.ibm.com/support/

Chapter 1. Overview of Web services application development 25

http://www.ibm.com/support/docview.wss?uid=swg21192376

docview.wss?uid=swg21192376 for information about DB2 environment variables

that you must enable when using DB2 XML Extender.

v WORF requires Java Database Connectivity (JDBC) 2.0, which is the default in

DB2 Version 9.

v Ensure that you have the required software installed. Verify your installation for

your particular platform with the specific documentation.

Procedure

To install the software for the WORF environment:

1. Stop DB2.

2. Issue C:\SQLLIB\java12\usejdbc2.bat and select JDBC 2.0. This step assumes

that you installed DB2 in C:\SQLLIB\ in a Windows environment. This step is

required if you are not running a version of DB2 later than Version 8.

3. Restart DB2.

4. Install the following Internet software:

v Apache Jakarta Tomcat Version 4.0.6 or later binary: http://
jakarta.apache.org/site/binindex.html

v Apache Axis 1.2: http://www.apache.org/

v Apache Xerces 1.4.4: http://xml.apache.org/

v Sun JavaMail 1.2: http://java.sun.com/products

v Sun JavaBeans™ Activation Framework (JAF) 1.0 1:http://java.sun.com/
products

v Sun j2ee.jar, version 1.3 or later: http://java.sun.com/products

v Sun qname.jar: http://java.sun.com/products

v wsdl4j.jar: http://oss.software.ibm.com/developerworks/projects/wsdl4j

v IBM Web Service SOAP provider: http://publib.boulder.ibm.com/infocenter/
wasinfo/v6r0/topic/com.ibm.

Apache Jakarta Tomcat Version 4 standard comes with the appropriate Xerces

parser. For earlier versions you must add the Xerces parser to your

CLASSPATH to use it as the XML parser.

Installing WORF on Apache Jakarta Tomcat

You can install WORF on Apache Jakarta Tomcat.

Procedure

To install WORF Version 9 on Apache Jakarta Tomcat:

1. To run WORF with IBM Web Service SOAP provider, or with Apache Axis, add

the following JAR files to the class path on your application server:

v axis.jar for the Apache axis engine.

v xerces.jar (or the jars of your Java XML parser)

v mail.jar

v activation.jar

v worf.jar

v j2ee.jar, version 1.3 or later

v qname.jar

v wsdl4j.jar. You can download this file from http://oss.software.ibm.com/
developerworks/projects/wsdl4j.

26 Application Development Guide for Federated Systems

http://www.ibm.com/support/docview.wss?uid=swg21192376
http://jakarta.apache.org/site/binindex.html
http://jakarta.apache.org/site/binindex.html
http://www.apache.org/
http://xml.apache.org/
http://java.sun.com/
http://java.sun.com/
http://java.sun.com/
http://java.sun.com/
http://java.sun.com/
http://oss.software.ibm.com/developerworks/projects/wsdl4j
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/topic/com.ibm.
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/topic/com.ibm.
http://oss.software.ibm.com/developerworks/projects/wsdl4j
http://oss.software.ibm.com/developerworks/projects/wsdl4j

v jaxrpc.jar

v log4j-1.2.8.jar

v commons-logging.jar

v commons-logging-api.jar

v commons-discovery.jar

v db2java.zip, ordb2jcc.jar , db2jcc_license_cisuz.jar, and db2jcc_license_cu.jar

(or the JDBC implementation jar of your database server). The name of the

driver class depends on the driver package that you use. You can modify the

driver package that you use in the group.properties file.
2. Modify the files listed in Table 1. The modifications that you make depend on

your Apache Jakarta Tomcat version and platform. Add a line for each of the

jar files mentioned above. Replace <jarfile> with the actual location of the jar

file. If you run Apache Jakarta Tomcat in an integrated development

environment, make sure that all these jars are on the CLASSPATH that you use

for starting Tomcat. The files that you need to modify are all in the directory in

which you start Apache Jakarta Tomcat. You should start and stop the server

with the startup.bat or shutdown.bat or startup.sh or shutdown.sh that is in the

app_server/bin directory.

3. If your WebSphere server is a release earlier than WebSphere 5.0.2, you must

download a file from http://java.sun.com/xml/downloads/saaj.html, named

saaj.jar. Copy saaj.jar to C:\WebSphere\AppServer\lib.

 Table 1. Class path designations

Platform Server

software

File to modify Command to add

UNIX

Apache

Jakarta Tomcat

3.2.x

\bin\tomcat.sh (before

″export CLASSPATH″)

CLASSPATH = $CLASSPATH:

<jarfile>

Apache

Jakarta Tomcat

3.3.x

\bin\tomcat.sh (before

″export CLASSPATH″)

CLASSPATH = $CLASSPATH:

<jarfile>

Apache

Jakarta Tomcat

4.x

\bin\setclasspath.sh (before

″export CLASSPATH″)

CLASSPATH = $CLASSPATH:

<jarfile>

Windows

Apache

Jakarta Tomcat

3.2.x

\bin\tomcat.bat

(:setClasspath section)

set CP = %CP%; <jarfile>

Apache

Jakarta Tomcat

3.3.x

\bin\tomcat.bat set CLASSPATH =

%CLASSPATH%; <jarfile>

Apache

Jakarta Tomcat

4.x

\bin\setclasspath.bat set CLASSPATH =

%CLASSPATH%; <jarfile>

Installing the Web services provider software requirements for

Apache Jakarta Tomcat on iSeries

You can install the Web services provider for Apache Jakarta Tomcat on iSeries

after ensuring that the required software is available.

Procedure

To install the required software:

Chapter 1. Overview of Web services application development 27

1. Install the following Internet software from Apache:

v Apache Jakarta Tomcat Version 4.0.3 or later binary from

http://jakarta.apache.org/site/binindex.html. (Apache Jakarta Tomcat

Version 4 standard comes with the appropriate Xerces parser. For earlier

versions you must add the Xerces parser to your CLASSPATH to use it as

the XML parser.)

v Apache Xerces 1.4.4 from http://xml.apache.org/
2. Install the following software from Sun:

v JavaMail 1.2 from http://java.sun.com/products

v JavaBeans Activation Framework (JAF) 1.0 1: http://java.sun.com/products

v j2ee.jar, version 1.3 or later: http://java.sun.com/products

v qname.jar: http://java.sun.com/products

v wsdl4j.jar: http://oss.software.ibm.com/developerworks/projects/wsdl4j

Web services provider software requirements for OS/390 and

z/OS

You can install the Web services provider (Web object runtime framework) on

OS/390 and z/OS operating systems.

Operating systems

You can set up the Web services provider (Web object runtime framework) in any

of the following operating systems:

v OS/390 Version 2.8 or later

v z/OS Version 1.1 or later

Database environments

You can use the following database environments:

v IBM DB2 Universal Database for OS/390 Version 7 or DB2 Universal Database

for z/OS (http://www.ibm.com/software/data/db2/os390)

v IBM DB2 XML Extender for OS/390 Version 7 or later (http://www.ibm.com/
software/data/db2/extenders/xmlext/index.html). Required for store and

retrieve operations

Software to install

v WebSphere Application Server Version 4.01 Service Level W401505 or later

v JavaMail Version 1.2 (http://java.sun.com/)

v JavaBeans Activation Framework Version 1.0.1(http://java.sun.com/)

v j2ee.jar, version 1.3 or later (http://java.sun.com/)

v qname.jar (http://java.sun.com/)

v IBM XML Toolkit for z/OS and OS/390 Version 1.4 with program temporary fix

(PTF) UW95866 (http://www.ibm.com/servers/eserver/zseries/software/xml/)

v wsdl4j.jar. You can download this file from http://oss.software.ibm.com/
developerworks/projects/wsdl4j.

Install the Web services provider examples

The Web services provider includes examples to help you begin using Web

applications.

28 Application Development Guide for Federated Systems

http://jakarta.apache.org/site/binindex.html
http://xml.apache.org/
http://java.sun.com/
http://java.sun.com/
http://java.sun.com/
http://java.sun.com/
http://oss.software.ibm.com/developerworks/projects/wsdl4j
http://www.ibm.com/software/data/db2/os390/library.html
http://www.ibm.com/software/data/db2/extenders/xmlext/index.html
http://www.ibm.com/software/data/db2/extenders/xmlext/index.html
http://java.sun.com/
http://java.sun.com/
http://java.sun.com/
http://java.sun.com/
http://www.ibm.com/servers/eserver/zseries/software/xml/
http://oss.software.ibm.com/developerworks/projects/wsdl4j
http://oss.software.ibm.com/developerworks/projects/wsdl4j

The Web services provider includes examples in the dxxworf.zip file. These

examples can be run in a variety of environments to help you understand how to

create your own Web services applications.

Installing and deploying WORF examples on WebSphere

Application Server Version 4.0.4 for z/OS or OS/390

You can deploy the examples that are provided with the Web services provider on

z/OS.

About this task

These steps are for deploying Web applications for use in WORF on the z/OS or

OS/390 platform. You can also verify that you have correctly installed and

configured WORF and its prerequisites.

Procedure

To install and deploy the Web services provider examples on z/OS:

1. Configure the System Management Scripting application programming interface

(API). For more information on configuring the scripting API on your OS/390

or z/OS system, see IBM WebSphere Application Server V4 for z/OS and OS/390:

Installation and Customization and IBM WebSphere Application Server V4.0.1 for

z/OS and OS/390: System Management Scripting API.

2. Prepare an enterprise archive file (EAR). You use EAR files to deliver Java 2

platform enterprise edition (J2EE) applications. They consist of Web archive

files (WAR) and Java archive files (JAR).

a. In UNIX System Services (USS), copy the websphere-services.war or the

axis-services.war to a temporary, writable directory and change your current

directory to that location.

b. Type the following command from the USS command line (all on one line):

390fy -op "" -context_root "/services"

 -display_name "ServicesApp" services.war

The command creates an initial EAR file with the name services.ear in the

current directory. The EAR file has a Context Root of services and a Display

Name of ServicesApp. The Context Root is the part of the Uniform

Resource Locator (URL) that directs WebSphere Application Server to your

application. The Display Name is a string that identifies your application in

the Systems Management End User Interface (SM/EUI) and in USS. You can

edit the Context Root and Display Name to any name you choose.

c. Resolve the Java Naming and Directory Interface (JNDI) name mapping for

services.ear. Do this by issuing the following command from the USS

command line (all on one line):

390fy -JNDIejbp "/<Sysplex>/<J2EE Server>"

 -op "_resolved" services.ear

The terms used in the above example have the following definitions:

<J2EE Server>

The name of the J2EE server onto which you will deploy the

application

<Sysplex>

The name of the Sysplex on which your J2EE server exists

Chapter 1. Overview of Web services application development 29

The command creates a new file with the name services_resolved.ear in the

current directory.
3. Deploy the application

Restriction: When executing the commands for this step, you must be logged

into USS with a user ID that is registered as a Systems Management

Administrator for WebSphere.

a. Copy the following sample files from the WebSphere Application Server

sample directory (<WAS_Home>/samples/smapi/) to the temporary

directory that contains the EAR file you just created.

v inputcreateconversation.xml

v inputprocessearfile.xml

v inputcommitconversation.xml
b. Set the environment variable DEFAULT_CLIENT_XML_PATH to the

temporary directory that contains the EAR file.

c. Edit the file inputcreateconversation.xml and specify a conversation name

and optionally a description of the name. The conversation name and

description can be any text that you want. However, the conversation name

must remain the same when you process the input files in the next steps.

Here is an example of the conversation name and description:

<inputcreateconversation conversationname="WORFSamples"

 conversationdescription="WORF Sample Test" />

d. Save the file inputcreateconversation.xml.

e. Type the following command (all on one line) from the USS command line:

CB390CFG -action createconversation

 -xmlinput inputcreateconversation.xml

 -output createconv.out

This command creates a file createconv.out in the temporary directory of

your system and contains the results of the operation. This file is not

needed except to verify the success of the application deployment.

f. Edit the file inputprocessearfile.xml. Specify the target J2EE server and the

EAR file to deploy. The following is an example of specifying the J2EE

server and the EAR file:

<inputprocessearfile conversationname="WORFSamples"

 j2eeservername="BBOASR2"

earfilename="/tmp/worfsamp/services_resolved.ear"

 processingmode="standard" />

g. Save the file inputprocessearfile.xml.

h. Type the following command (all on one line) from the USS command line:

CB390CFG -action processearfile

 -xmlinput inputprocessearfile.xml

 -output processear.out

This command creates a file processear.out in the temporary directory of

your system and contains the results of the operation. This file is not

needed except to verify the success of the application deployment.

i. Edit the file inputcommitconversation.xml. Specify the conversation name

that you used in the previous steps. For example:

<inputcommitconversation conversationname="WORFSamples" />

j. Save the file inputcommitconversation.xml.

k. Type the following command (all on one line) from the USS command line:

30 Application Development Guide for Federated Systems

CB390CFG -action commitconversation

 -xmlinput inputcommitconversation.xml

 -output commitconv.out

This command creates a file commitconv.out in the temporary directory of

your system and contains the results of the operation. This file is not

needed except to verify the success of the application deployment.
4. Set up the Web server.

a. Ensure that the J2EE server allows the Context Root that you named in Step

2 on page 29. In the file webcontainer.conf of the server, ensure that at least

one host has a specification as in the following example:

host.<host_alias>.contextroots=/somewebapp,/services

To accept any Context Root, you can use the following line of text:

host.<host_alias>.contextroots=/*

Using this method to specify the context root allows you to skip this step

when you deploy future applications.

b. If you use the Web server plug-in to access your J2EE server, add a Service

statement to the file httpd.conf of your Web server. This statement specifies

the Context Root of your deployed application. As an example, if you

specified /services as your Context Root in Step 2 on page 29, your new

Service statement is like the following example, which would be displayed

on a single line:

Service /services/*

<WAS_Home>/WebServerPlugIn/bin/was400plugin.so:service_exit

The <WAS_Home> is the directory in which WebSphere Application Server

is installed.

c. Restart the Web server.
5. Verify the WORF configuration.

a. Access the WORF Web Services Sample Page that is included in the sample

WAR file. If you set the Context Root in Step 2 on page 29 to /services,

type the following URL:

http://<hostname>/services/

b. In Figure 7 on page 32, the first section of samples, titled Installation

Verification, shows a single DADX file, ivt.dadx. Click on the TEST link to

open the built-in test facility of WORF.

c. From the WORF test facility, Figure 8 on page 33, select the testInstallation

operation. Click on Invoke.

d. An XML document displays in the bottom frame of the window. Verify that

the current time of day appears in the document, such as in the following

example:

<CURTIME>14:38:26.000Z</CURTIME>

If this test fails, the configuration is not correct. Verify that you correctly

installed the software requirements. Also, verify that you configured the

WebSphere Application Server and that you have the authorization to access

DB2.
6. Prepare and run the examples.

a. On the Figure 7 on page 32 there are DADX samples that are shipped with

the services.war application. Before you run the samples, follow the setup

instructions that are contained within each category.

Chapter 1. Overview of Web services application development 31

b. Execute an individual Web service by selecting the TEST link for each

sample. Select the WSDL, WSDLservice, WSDLbinding, and XSD links to

run those examples.

After you deploy the application, you can modify the application. You can also

create additional WAR files for deployment. After you create a WAR file, deploy

the Web application by using Step 2 on page 29, Step and Step 4 on page 31.

Here are examples of the Web services sample pages:

Figure 7. WORF sample page

32 Application Development Guide for Federated Systems

Figure 8. WORF test facility

Chapter 1. Overview of Web services application development 33

Deploying WORF examples on WebSphere Application Server

Version 5.1 or later for Windows and UNIX

Web services provider includes examples that you can deploy.

Before you begin

v Install WebSphere Application Server on your work station in a path such as

C:\WebSphere\Appserver (on your Windows environment).

v Install WORF.

Procedure

To install and deploy the WORF examples:

 1. Start the WebSphere Administration Server.

 2. Open the Administrator’s console by selecting Start → Programs → IBM

WebSphere → Administrator’s Console.

 3. Select Applications → Enterprise Applications . The content window displays

all of the enterprise applications that you installed on the current server.

Figure 9. Result of WORF test-expected output

34 Application Development Guide for Federated Systems

4. Install websphere-services.war or axis-services.war as an enterprise application

by clicking the Install push button.

a. From the Local path field, click the Browse push button to locate the path

to the correct services file that is included in the c:\WORF\lib directory.

WORF ships two services files for you to choose from when running the

samples. These files are websphere-services.war and axis-services.war.

Select the correct services file for the SOAP engine that you are running.

b. If you select to install the websphere-services.war, select the following

options from the WebSphere Application Server administration console:

v Select the Generate Default Bindings option to generate default

bindings and mappings.

v Select the Use Binary Configuration option to use the binary

configurations.

v Select the Enable Class Reloading option to enable class loading.

You can install the websphere-services.war from the command line by

using the worf_eas_admin.jacl script. For information on installing

websphere-services.war from the command line see “Installing Web

applications on the application server for DB2” on page 21

c. Specify a context name for the Web application in the Context Root field.

To execute the examples discussed here, you must specify services as the

Context Root name. Figure 10 on page 36 shows the WebSphere

Application Server Administrator’s Console during the installation of the

application:

Chapter 1. Overview of Web services application development 35

d. Click Next.

e. Accept all of the other defaults and click Next for the remainder of the

Wizard. On the Map virtual hosts for web modules window, select the

.WAR file and click Next. On the Map modules to application servers

window, select the .WAR file and click Next. The configuration options

specify a virtual host (for example: default_host) and an application

server (for example: Default Server).

f. At the end of the Wizard, click Finish.

g. The final window displays the Save to Configuration. Click Save.
 5. Verify that the database settings are correct (especially user ID and password)

in the group.properties files.

 6. Issue setup.cmd in a DB2 command window in a Windows environment (the

DB2 Command Line Processor window), or setup.sh in a UNIX environment

command window in each of the database directories to create the database.

For example, run setup.cmd in the dxx_sales_db directory to set up the

SALES_DB database that uses DB2 XML Extender.

If your application does not need the XML Extender functions, then you do

not need to configure DB2 XML Extender. If you do use DB2 XML Extender,

then configure your system with the appropriate DB2 environment variables.

Refer to http://www.ibm.com/support/docview.wss?uid=swg21192376 for

information about DB2 environment variables that you must enable when

using DB2 XML Extender.

Figure 10. Specification of the application or module.

36 Application Development Guide for Federated Systems

http://www.ibm.com/support/docview.wss?uid=swg21192376

Attention: If you issue the setup command in the dxx_sample directory, the

command drops and then recreates the SAMPLE database. If you use the

SAMPLE database that is shipped with the DB2 Version 9.1 product, be aware

that you will lose modifications that you have made to the database.

 7. If you deployed your own application, copy the worf-servlets.jar file from the

WORF directory to the WebSphere/AppServer/installedApps/<host>/
<application WAR directory>/WEB-INF/lib directory.

 8. Stop the current server.

 9. Restart the server.

10. Verify that appropriate services.war is already running by selecting

Applications → Enterprise Applications.

11. Open a browser window to test the installation by accessing the Web

application welcome page. If you deployed the WORF sample application, and

if you named the application services, then type http://localhost:9080/services

from your browser to open the Web services sample page. The specific port

number varies according to the WebSphere Application Server configuration.

Here are examples of the Web services sample pages.

Figure 11. Web services sample page.

Chapter 1. Overview of Web services application development 37

Now, you can click on some of the links to verify that the sample services work.

The test page consists of a tree view of the operations, an input view and a results

view. You access the test page from the TEST link within the Welcome Page of the

samples, or by typing the following in your browser: <your-Web-server>:9080/
<context_root_name>/<group_name>/<dadx file>/TEST.

Installing and deploying the WORF examples in iSeries

You can install and deploy the Web services provider examples in the iSeries

environment.

Procedure

To install the WORF examples:

1. Make sure that the worf.jar file is in

/QIBM/UserData/WebASAEs4/worf/lib/app

In this example, WebASAEs4 is the version of WebSphere, and worf is the

name of the WebSphere instance.

2. If file runtime.zip is not in directory /QIBM/UserData/java400/ext, execute the

following commands:

>qsh

>ln -s /QIBM/ProdData/OS400/Java400/ext/runtime.zip

 /QIBM/UserData/Java400/ext/runtime.zip

3. Copy the services.war into your tomcat\webapps directory.

4. If you already have a services.war file installed, then perform the following

tasks:

a. Stop Apache Jakarta Tomcat.

b. Delete the services subdirectory under webapps and all of its contents.

Note: Any of your previously deployed Web services in the services Web

application will be lost with this action, so make sure this is acceptable.

c. Restart Apache Jakarta Tomcat.

Figure 12. Web services sample page-the test links

38 Application Development Guide for Federated Systems

5. Stop and start Apache Jakarta Tomcat (unless you deleted the services directory

in the previous step). The services context starts:

ContextManager: Adding context Ctx(\services)

6. Invoke the examples in the sample application by accessing the test page at

http://<system>:<port>/services

a. Invoke a sample with no parameters: http://<system>:<port>/services/
travel/ZipCodes.dadx/findAll

b. Invoke a sample with parameters:

http://<system>:<port>/services/

 travel/ZipCodes.dadx/findCityByZipCode?zipcode=55901

7. Verify that your database settings are correct, especially user ID and password,

in group.properties. If you do not use a value for user ID, the Web services

code runs under QEJBSVR. Therefore, authorize this profile to any database

objects that you want to access. Try the verification.dadx on your system (the

dynamic test page and the WSDL).

Installing and deploying the WORF examples on Apache

Jakarta Tomcat

You can install and deploy the WORF examples on Apache Jakarta Tomcat.

Procedure

To install the WORF examples:

1. Unjar the websphere-services.war or axis-services.war into your

tomcat\webapps directory (depending on the SOAP engine that you install).

2. If you already have a websphere-services.war or axis-services.war file installed,

perform the following tasks:

a. Stop Apache Jakarta Tomcat.

b. Delete the services subdirectory under webapps and all of its contents.

Note: Any of your previously deployed Web services in the services web

application will be lost with this action, so make sure that this is acceptable.

c. Restart Apache Jakarta Tomcat.
3. Stop and start Apache Jakarta Tomcat (unless you deleted the services directory

in the previous step). The services context starts:

ContextManager: Adding context Ctx(\services)

4. Verify the installation by entering the following uniform resource locator (URL).

The port number, designated here by 8080 depends on your own current

machine:

http://localhost:8080/services

You should get a page that looks like Figure 11 on page 37.

5. Verify that your database settings are correct in the group.properties file,

especially the user ID and password. Test the verification.dadx on your system

(the dynamic test page and the WSDL).

6. To display the XML document, use Internet Explorer Version 5 or later or a text

editor.

7. List the deployed SOAP services in your services context in your system.

WORF automatically deploys the services, for each test you run. Click on the

SOAP administration link from the Web services Sample Page.

Chapter 1. Overview of Web services application development 39

Migrating Web services to WebSphere Federation Server Version 9.1

You can migrate earlier versions of the Web services provider to WebSphere

Federation Server Version 9.1 on Windows or UNIX to work with WebSphere

Application Server Version 5 or later or to work with Apache Jakarta Tomcat.

Procedure

To migrate to the Web services provider from an earlier version:

1. Locate the dxxworf.zip file in the following path: DB2 Version 9.1 installed

location\samples\webservices\dxxworf.zip.

2. Locate the lib directory in the WebSphere Application Server.

The lib directory can be found in the WebSphere Application Server installed

location\WebSphere\AppServer\

3. Replace the worf.jar file by copying the lib\worf.jar from the Version 9.1

dxxworf.zip to the WebSphere Application Server lib directory.

4. For each application that you deployed with the earlier version of WORF,

replace the JavaServer Pages files in the worf subdirectory of that application,

with the files in the worf subdirectory of the websphere-services.war, or the

axis-services.war.

5. In the lib directory of the WAR or EAR file of your Web application, replace the

worf-servlets.jar file with the worf-servlets.jar file in the lib directory of the

websphere-services.war file or the axis-services.war file.

6. Specify apache-axis or was as a parameter in the web.xml file for all servlet

mappings.

If you did not define the SOAP engine parameter in the web.xml file, the

default SOAP engine is the primary SOAP engine that is supported by the

application server. For the WebSphere Application Server it is the WebSphere

soap engine. For Tomcat, it is Axis.

7. Re-deploy the application.

Migrating Web applications to work with WebSphere

Federation Server Version 9.1

You can migrate Web applications that were created with earlier versions of the

Web services provider to WebSphere Federation Server Version 9.1 on Windows or

UNIX to work with WebSphere Application Server Version 5 or later or to work

with Apache Jakarta Tomcat.

Procedure

To migrate your Web applications to the latest Web services provider from an

earlier version:

1. Extract the Version 9.1 websphere-services.war or axis-services.war to a

temporary directory, such as temp_v91.

jar -xf temp_v91

2. Extract your Web application WAR file to a temporary directory such as

temp_war.

jar -xf temp_war

3. Optional: If you are using the Web services provider TEST page, replace all of

the files in the WORF directory of the temp_war directory with the files in the

WORF directory of the temp_v91 directory.

40 Application Development Guide for Federated Systems

4. Replace the worf-servlets.jar file in the lib directory of the temp_war directory

with the worf-servlets.jar file in the temp_v91 directory.

5. Modify the value of the soap-engine parameter in the web.xml file to reflect the

SOAP engine to which you are migrating. For WebSphere Application Server,

the default is was if the parameter is not already specified. The valid SOAP

engines are was and axis.

6. Repackage the Web application by using the following command: jar -cf

newWebApp.war.

7. Deploy the new Web application.

Introduction to using DB2 as a Web services provider – WORF

Web services are sets of business functions that applications or other Web services

can invoke programmatically over the Internet by using a Web Service client

interface.

Deprecating Web services object runtime framework (WORF)

The Web services objects runtime framework (WORF) is no longer supported and

will not be updated.

In the Data Server Developer Workbench, you now can create Web services

without writing document access definition extension (DADX) files. Use the Data

Server Developer Workbench to create the SQL statements and stored procedures

on which you can base the operations of your Web services. With the Data Server

Developer Workbench you can now easily deploy a Web service

Read the Developing and deploying Web services for more detailed information

about the feature within Data Server Developer Workbench.

To use your existing WORF applications, you must migrate your applications to

Web services within the Data Server Developer Workbench. For the instructions on

migrating to the Web services within the Data Server Developer Workbench, see

Migrating Web applications that were developed for the Web Object Runtime

Framework (WORF).

Accessing data by using a Web service

In the federated environment, you can define a basic Web service by using

standard SQL statements, and DB2 XML Extender stored procedures. For Web

services that involve advanced transformations between XML and relational data,

use the DB2 XML Extender.

You can define a Web service to access data in the database by using a simple

Document Access Definition Extension (DADX) file. You can create this DADX file,

which is an XML file, by using a simple text editor, or by using the WebSphere®

Studio Application Developer and the wizards available from WebSphere Studio.

The DADX file drives the Web services run-time environment, which includes

various database management tools and the Web object runtime framework

(WORF). The WORF runtime environment provides a simple mapping of XML

schema to SQL data types. The DADX file can contain standard SQL statements,

such as SELECT, INSERT, UPDATE, DELETE, and CALL statements to query and

update a database and call stored procedures. If you want to process SQL

Chapter 1. Overview of Web services application development 41

https://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.datatools.dsws.tooling.ui.doc/topics/tdswscrtwebsvs.html
https://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.datatools.dsws.tooling.ui.doc/topics/tdswsworf.html
https://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.datatools.dsws.tooling.ui.doc/topics/tdswsworf.html

statements at runtime, then you must enable the dynamic query service (DQS) that

is provided by WORF by using a DADX file that includes only the <DQS/> tag.

If you do not use the WORF runtime environment, you need to write your own

program to handle the details of creating the Web service, such as developing your

own WSDL. Some of the functions that WORF provides include the following:

v Analyzing the Web service request

v Connecting to the database

v Executing the SQL request

v Encoding the output message from the SQL results

v Returning the message back to the client

The DADX file can also contain DB2 XML Extender elements, such as Document

Access Definition (DAD) file references, XML collection operations to generate and

store XML documents, or user-defined types (UDT), and user-defined functions

(UDF). The DAD file defines a mapping between XML and relational data. DB2

XML Extender allows XML documents to be stored intact, and optionally indexed

in side tables. DB2 XML Extender does this by using the XML column access

method, or as a collection of relational tables by using the XML collection access

method.

Web services provider features

The Web services provider uses features that are needed by application developers.

WORF provides the following features:

Resource-based deployment

A key feature of WORF is that it supports resource-based deployment of Web

services.

Resource files, such as DADX files, describe the Web services to WORF, so that

WORF can generate the appropriate Web services from these files. When you

request the resource file, WORF loads the file and makes it available as a Web

service. If you edit the resource file and request it again, WORF detects the change

and loads the new version automatically. This process of automatically reloading

the resource file makes Web service development more productive.

You can create your own resource files. The resource files must conform to specific

syntax and semantic rules. The resource files can make references to each other (for

example, a DADX file can contain references to DAD files). These references must

be correct so that you can deploy the Web services properly.

In addition to specifying storage and retrieval operations on XML data, WORF

allows stored procedures and SQL statements to be exposed as invokable Web

service operations. You can expose any database stored procedure. WORF assumes

that your stored procedure result sets have fixed metadata. Fixed metadata refers

to data with a fixed number and a fixed shape, which implies a certain number of

columns, with certain column names and data types. The operation signature

includes the input and output parameters. You can execute stored procedures

when you use dynamic query services (DQS) provided by WORF, with no fixed set

of metadata or result sets that are required You can also specify SQL statements to

select, insert, update and delete data. And, WORF provides simple mapping of

XML schema to SQL data types. These particular features do not require the XML

Extender.

42 Application Development Guide for Federated Systems

Web services automatic reloading

Automatic reloading makes developing DADX Web services as simple as the

developing of Java™ Server Pages.

During the course of development, you are likely to make frequent changes to

your DADX files. WORF allows you to make changes to your DADX files while

the application server is running, and automatically reloads the DADX file with

the new updates. You can turn off automatic reloading when you deploy your

DADX Web services to a production server.

Accessing the Web service with GET, POST, and SOAP bindings

You can access the Web service by using the HTTP GET, and SOAP bindings.

The Web object runtime framework (WORF) test page acts as a simple Hypertext

Markup Language (HTML) client of the Web Service and uses the Hypertext

Transfer Protocol (HTTP) POST binding. You can invoke the listDepartments

operation with the HTTP GET, and POST bindings. The following example shows

the basic syntax of the GET or POST binding:

http://server:port/contextRoot/group/dadx_file/operationName

If you have installed the WORF samples, you can type the following uniform

resource locator (URL) to issue a GET request:

http://<yourWebAppServer:9080>/services/db2sample/HelloSample.dadx/listDepartments

The localhost port number, designated here by <yourWebAppServer> depends on

your own current machine. The WORF listDepartments operation returns an XML

response that you can save to a file. The HTTP response is the same for GET and

POST.

Chapter 1. Overview of Web services application development 43

The GET binding request does not send a request document. Instead, you attach all

of the necessary parameters in the query string to the URL You can attach a query

string to the URL with a question mark (?). The delimiter between any

parameter=value pair is the ampersand (&). Any special characters must be URL

encoded. The following example is a GET binding request that uses a query string

with the question mark, and a delimiter.

http://server:port/contextRoot/group/dadx/

 operationName?param1=abc¶m2=1234¶m3=thi&20is&20a&20parameter

The following example is a dynamic query service. This is a GET binding request.

http://localhost:9080/services/db2sample/dqs.dadx/

 executeQuery?queryInputParameter=select+*+from+employee&extendedInputParameter=

 %3Cproperties%3E%0D%0A%3C%2Fproperties%3E%0D%0A

A POST binding issues an HTTP POST request. A POST bind request sends a

request document. The document contains the request parameter, but the

parameter is not in XML format. An HTTP client application, such as a Web

browser, creates the request document. A Web browser usually creates a request

document from input forms that are sent to the server.

The following syntax is a typical POST bind request:

http://server:port/contextRoot/group/dadx/operationName

<?xml version="1.0" ?>

<xsd1:listDepartmentsResponse

 xmlns:xsd1="http://schemas.ibm.com/sample/department.dadx/XSD"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<return>

 <xsd1:listDepartmentsResult

 xmlns:xsd1="http://schemas.ibm.com/sample/department.dadx/XSD"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<listDepartmentsRow>

 <DEPTNO>A00</DEPTNO>

 <DEPTNAME>SPIFFY COMPUTER SERVICE DIV.</DEPTNAME>

</listDepartmentsRow>

<listDepartmentsRow>

 <DEPTNO>B01</DEPTNO>

 <DEPTNAME>PLANNING</DEPTNAME>

</listDepartmentsRow>

<listDepartmentsRow>

 <DEPTNO>C01</DEPTNO>

 <DEPTNAME>INFORMATION CENTER</DEPTNAME>

</listDepartmentsRow>

<listDepartmentsRow>

 <DEPTNO>D01</DEPTNO>

 <DEPTNAME>DEVELOPMENT CENTER</DEPTNAME>

</listDepartmentsRow>

 ...

<listDepartmentsRow>

 <DEPTNO>E21</DEPTNO>

 <DEPTNAME>SOFTWARE SUPPORT</DEPTNAME>

</listDepartmentsRow>

</xsd1:listDepartmentsResult>

</return>

</xsd1:listDepartmentsResponse>

Figure 13. XML response document

44 Application Development Guide for Federated Systems

The following example is a dynamic query service. This is a POST binding request.

http://localhost:9080/services/db2sample/dqs.dadx/executeQuery

The query is the same as the GET binding request, except that the information that

follows the question mark (?) is in the request document, and not part of the URL.

In the following example, the content type is www-urlencoded:

queryInputParameter=

 select+*+from+employee&extendedInputParameter=

%3Cproperties%3E%0D%0A%3C%2Fproperties%3E%0D%0A

The GET and POST response for the dynamic query service request is:

<?xml version="1.0"?>

<xsd1:executeQueryResponse

 xmlns:xsd1="http://schemas.ibm.com/db2/dqs/types/soap"

 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <queryOutputParameter>

 ...

 </queryOutputParameter>

</xsd1:executeQueryResponse>

HTTP GET, and POST bindings are generally the same as any other HTTP GET,

and POST requests. The HTTP GET binding adds any input parameters to the

operation to the uniform resource locator (URL). But, the HTTP POST binding

sends the parameters in the request body.

WSDL from a DADX file

The Web services description language (WSDL) document is an XML vocabulary

that is used to describe the interface of business services. The DADX document

contains the information required to implement the Web service. It also contains

the information required to generate the WSDL document that describes the Web

service.

You can use the WSDL to publish services to a UDDI registry. WSDL allows

development tools to programmatically create requester code and provider code

for use in binding to a Web service. It also enables preconditioned applications to

dynamically bind to a Web service. You can use WSDL to specify the data that are

required for requests and responses. WSDL uses XML Schema for precise data

definition.

A WSDL binding describes how the service is bound to a messaging protocol,

particularly the SOAP messaging protocol. A WSDL SOAP binding can be either an

RPC style binding or a document style binding. A SOAP binding can also have an

encoded use or a literal use.

To generate the WSDL, submit the following uniform resource locator (URL). The

localhost port number, designated here by <yourWebAppServer> depends on your

own current machine:

http://yourWebAppServer:port/webapp_name/group_name/dadx_file.dadx/WSDL

Web services object runtime framework (WORF) dynamically generates the WSDL

document. You can publish this in UDDI or some other Web service directory.

If you use the samples that WORF includes during the installation, you can submit

the following URL:

http://yourWebAppServer/services/sales/PartOrders.dadx/WSDL

Chapter 1. Overview of Web services application development 45

Web services documentation

You can include documentation in the DADX file for the Web service as a whole

and for each operation in the Web service.

Figure 14 illustrates how to add documentation:

The documentation can contain any valid XML. For proper display in a browser,

you should use XHTML. If you use XHTML, then define the XHTML namespace

for the documentation. When you request the test page, it also includes the

documentation:

Web services that exist from Web services provider

Within a directory of Web applications, or a group of Web services, there is

potentially a large number of Web services that you can use on your network. But

before you can use these Web services, you must find them and get information

about them. Web Services Inspection Language (WSIL) makes this search process

easier.

<?xml version="1.0" encoding="UTF-8"?>

<DADX

 xmlns="http://schemas.ibm.com/db2/dxx/dadx">

 <documentation>

 Simple DADX example that accesses the SAMPLE database.

 </documentation>

 <operation name="listDepartments">

 <documentation>

 Lists the departments.

 </documentation>

 <query>

 <SQL_query>SELECT * FROM DEPARTMENT</SQL_query>

 </query>

 </operation>

</DADX>

Figure 14. HelloSample.dadx

Figure 15. WORF test page with documentation

46 Application Development Guide for Federated Systems

Web services inspection language document

DB2® Web services provides a way to find the Web services operations that you

need. By using WORF, you inspect all of the Web services available within an

application, or within a group. The inspection generator produces an XML

document that is a list of the Web services available to you. The list is a report of

the Web services at the group directory level, if you run the generator from the

group directory. The list is a report of the Web services at the application directory

level if you run the generator from the application directory. You run the

inspection generator from your browser by typing <your-Web-server>:9080/
<context_root_name>/inspection.wsil in your browser.

The examples in this topic are based on the WORF samples and a WORF sample

application named services

The following example creates a list of Web services that are available from the

Web application named services:

http://localhost:9080/services/inspection.wsil

An inspection.wsil at the application level looks like this:

Chapter 1. Overview of Web services application development 47

An inspection.wsil at the group level looks like this:

Figure 16. WSIL at the application level

48 Application Development Guide for Federated Systems

To ensure that the WSIL that you generate includes a Web service, the Web service

must conform to the following criteria:

v The DADX file that describes the Web service must be valid.

v You must define a group.properties file that belongs to the Web service.

v The web.xml file must contain appropriate servlet mappings that identify the

group.

The servlet mapping in the web.xml file for the WSIL should look like the

following example:

 <servlet>

 <servlet-name>wsil</servlet-name>

 <display-name>wsil</display-name>

Figure 17. WSIL at the group level

Chapter 1. Overview of Web services application development 49

<servlet-class>

 com.ibm.etools.webservice.rt.wsil.servlet.WSILInvoker

 </servlet-class>

 <init-param>

 <param-name>soap-engine</param-name>

 <param-value>apache-axis</param-value>

 </init-param>

 <load-on-startup>-1</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>wsil</servlet-name>

 <url-pattern>/inspection.wsil</url-pattern>

 </servlet-mapping>

When a Web service is invoked, WORF reads the web.xml file for information

about how to run the service, such as servlet information, and group information.

The web.xml file includes the servlet definition so that the WSIL specification

associates the correct Web operations with the WORF samples. WORF dynamically

generates a WSIL document that contains all of the available Web services in the

groups directory of the Web application server. If you add a Web service to the

group.properties file after the Web application server is started, you do not need to

restart the server before you start the WSIL generator.

Web services list page

Another kind of inspection document that you can produce is the Web services list

page. The Web services list page is an HTML document that contains a list of all of

the available Web services in an application directory or in the groups directory of

the Web application server. The list also contains links to the WORF samples and

the WSDL of the services. You can access this page by typing the following URL in

your browser:

Application level

<your-Web-server>:9080/<context_root_name>/LIST

Group level

<your-Web-server>:9080/<context_root_name>/<group name>/LIST

The servlet mapping and URL pattern in the web.xml file for the list page should

look like the following example:

<servlet>

 <servlet-name>list</servlet-name>

 <display-name>list</display-name>

 <servlet-class>

 com.ibm.etools.webservice.rt.list.servlet.ListInvoker

 </servlet-class>

 <init-param>

 <param-name>soap-engine</param-name>

 <param-value>apache-axis</param-value>

 </init-param>

 <load-on-startup>-1</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>list</servlet-name>

 <url-pattern>/LIST</url-pattern>

 </servlet-mapping>

A list page at the group level looks like this:

50 Application Development Guide for Federated Systems

Figure 18. Web services list page

Chapter 1. Overview of Web services application development 51

52 Application Development Guide for Federated Systems

Chapter 2. Creating a Web services provider from a database

You can make DB2® Version 9.1 a Web services provider.

About this task

Some of these tasks are performed by a singe individual, and some are allocated

for database administrators or Web application developers.

Procedure

To make DB2® Version 9.1 a Web services provider:

 1. Create and configure the databases. This is usually done by the database

administrator.

 2. Optional: Enable the databases for DB2 XML Extender. The retrieveXML,

storeXML, and XML column operations require DB2 XML Extender. See the

administration chapters of DB2 XML Extender Administration and Programming

to learn how to enable the databases for XML Extender.

 3. Extract the websphere-services.war file or the axis-services.war file to a

temporary location, such as temp_new by using the following command: jar

-xf temp_new. The WAR file that you unjar depends on the SOAP engine that

you want to use for the Web application.

a. You can create the enterprise archive or Web archive (EAR or WAR) files

on the WebSphere Application Server.

b. You can create only WAR files on Tomcat.
 4. Create, copy or rename a group.

 5. Delete any groups that you do not want.

 6. For each group, create or update the group.properties file with the database

name and other parameters that are necessary for that group, which is located

in the WEB-INF directory.

 7. Create the DADX files and replace the DADX files in the group with the new

DADX files.

 8. Optional: Create the a Document Access Definition (DAD) file to map XML

and the relational data conversions (required when you use XML Extender

stored procedures).

 9. Update other files that pertain to the group, such as group.imports as

necessary.

10. Update the web.xml file to contain the servlet names and servlet mappings for

your Web application.

11. Repackage all of the files to create a new WAR file for your Web application

by using the following command: jar -cf myWebApp.war

12. Deploy the WAR file.

13. Verify that the Web service functions properly by using the DADX test page

that is available if you deploy the Web services provider examples. You can

copy the JavaServer Pages that are located in the install directory of the Web

services provider in the websphere-services.war file or the axis-services.war

file to test some of the Web services provider functionality in your application.

© Copyright IBM Corp. 2005, 2007 53

When the enterprise archive or Web archive (EAR or WAR) file is deployed, it

becomes a folder containing the Web application where the developer can do

further modifications. The following example shows the directory path for the

enterprise archive or Web archive files:

WAR files

Web application → group → DADX

file (the Web service) → the SQL operations

EAR files

Enterprise application → Web

application → group → DADX file

(the Web service) → the SQL operations

The EAR file is an enterprise application that is described in the Java™ 2 Enterprise

Edition specification (J2EE). WAR files are also described in the J2EE specification.

The Web application folder is on a server that is a collection of related files and

tools. Web applications include the interfaces, program flow, program logic, and

data access information to create an infrastructure for doing business over the

Internet.

Defining a group of Web services

Groups are containers for Web services that share common configuration options.

The groups directory contains the resources for all DADX Web service groups.

You can use groups to share these configuration options:

v Database configuration

v Namespace setup

v Message encoding setup

You create the group directory during the Web application configuration. This

directory is in the WEB-INF\classes\groups subdirectory of the base directory of

the Web application.

DADX files contain a description of the Web services. The Web services provider

contains the implementation of the Web services and are therefore similar to Java™

classes. The classes directory is part of the Java CLASSPATH for the Web

application. This means that the Java class loader can load your DADX files.

Within the groups directory, the Web services provider stores each group of DADX

Web services in a directory with the same name as its servlet instance. The

application server looks for the right servlet instance to call by the given URL that

is based on the web.xml file.

Group imports file

WORF uses another resource, the group.imports file. This file is an optional

resource that helps the Web service consumers or tools that use the generated

WSDL to find the schemas that are used. If the group.imports file exists, then the

WSDL document generates the imports elements based on the content of the

group.imports file and the scope of the element. If no group.imports file exists,

then no import elements are generated for WSDL documents for non-dynamic

query services. Import elements are always generated for WSDL documents for

dynamic query services. For dynamic query services, the WSDL document contains

some data types that are in db2WebRowSet.xsd. With no group.imports to define a

54 Application Development Guide for Federated Systems

location of db2WebRowSet.xsd, WORF assumes that this schema file is in the

default location, such as in the following example:

http://server:port/contextRoot/db2WebRowSet.xsd

Location of example DADX files

In the examples relating to the DB2® Web services, the WORF application stores

the DADX files in the WEB-INF\classes\groups\dxx_sample directory, the

WEB-INF\classes\groups\dxx_sales_db directory, and the WEB-INF\classes\
groups\dxx_travel directory.

Defining the web.xml and group.properties files

There is a group.properties file for each group, and one web.xml file for all of the

groups in a Web application. There is a servlet and a servlet-mapping for each

group in the web.xml file.

About this task

You can create the web.xml and group.properties files by using the Rational® Web

Developer for WebSphere Software. If you are migrating to a new version of

WORF, make sure that the web.xml and group.properties files contain the values

that you expect for your environment.

Procedure

To define a new group of DADX Web services, complete the following steps:

Defining the web.xml file

The Web services provider reads the web.xml file for information about how to run

the Web service, such as servlet information, and group information, and to

determine which SOAP engine classes to load.

About this task

You can create the web.xml file by using Rational Web Developer for WebSphere

Software. If you are migrating to a new version of WORF, make sure that the

web.xml file contains the values that you expect for your environment.

The default encoding for the web.xml file is UTF-8. You update the file in UTF-8

for OS/390 or z/OS, by sending the web.xml file to a UNIX or Windows system.

You can send the file by using the File Transfer Protocol (FTP) binary transfer.

Then update the file, and return the file to the original system.

Procedure

To define the web.xml file:

1. Choose a group name for the DADX group that reflects your application, such

as myapp_group.

2. Edit the web.xml file in the WEB-INF directory, to define the group name. You

can have multiple group names in the same web.xml file.

Chapter 2. Creating a Web services provider from a database 55

Elements required in the web.xml file

When editing the web.xml file, you must provide information about the servlets

and the servlet mappings, as well as the SOAP engine.

<servlet>

The <servlet> element defines a new servlet instance for the group. At least one

<servlet> element must exist for each group, but a group can have multiple

<servlet-mapping> elements. See the Java servlet specification for more information

on servlets. In the web.xml file example, the <servlet-name> element defines a

group named myapp_group

<servlet-name>

The <servlet-name> element is a child element of the <servlet>> element and of

the <servlet-mapping> element. The <servlet-name> element defines the name of

the group. The <servlet-name> must be a valid directory name under the groups

directory. You use this name to store the DADX resources for this group of Web

services. For example: myapp_group is defined in both the <servlet> and

<servlet-mapping> elements.

<servlet-mapping>

You must have at least one <servlet-mapping> element to introduce a mapping

between a URL and the group. The child element <servlet-name>, defines the

group name and must be the same as the directory name for the group, which also

means that the <servlet-name> must be the same as in the <servlet> group. The

<servlet-name> element is the link between the <servlet> and the

<servlet-mapping> elements.

<url-pattern>

The <url-pattern> element is the uniform resource locator (URL) that is associated

with the group. The <servlet-mapping> element associates the dxx_sales_db servlet

with URLs of the form /url_pattern/*. The URL pattern must be of this form for

WORF to operate correctly. For example: /myapp/*. The <servlet-name> in this

example is myapp_group.

<init-param>

You can update the name of the SOAP engine that you want to use. The parameter

name to specify the soap engine is <soap-engine>. If you want to use the IBM

Web Service SOAP provider engine, then the parameter value is was. If you want

to use Apache Axis, then the parameter value is apache-axis. If you do not specify a

<soap-engine> parameter, the default soap engine is was in the WebSphere

Application Server and apache-axis in Tomcat.

Example of a web.xml file

The following code shows an example of the web.xml file. The <servlet-mapping>

element and the specific values that are defined are in bold :

web.xml <!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//

 DTD Web Application 2.2//EN"

 "http://java.sun.com/j2ee/dtds/web-app_2.2.dtd">

<web-app>

 <servlet>

56 Application Development Guide for Federated Systems

http://java.sun.com/products/servlet/

<servlet-name>

 myapp_group

 </servlet-name>

 <servlet-class>

 com.ibm.etools.webservice.rt.dxx.servlet.DxxInvoker

 </servlet-class>

 <init-param>

 <param-name>

 faultListener

 </param-name>

 <param-value>

 org.apache.soap.server.DOMFaultListener

 </param-value>

 </init-param>

 <init-param>

 <param-name>

 soap-engine

 </param-name>

 <param-value>was</param-value>

 </init-param>

 <load-on-startup>-1</load-on-startup>

 </servlet>

<servlet-mapping>

<servlet-name>myyapp_group</servlet-name>

<url-pattern>/myapp/*</url-pattern>

</servlet-mapping>

<welcome-file-list>

<welcome-file>index.html</welcome-file>

</welcome-file-list>

</web-app>

Defining the group.properties file

The group.properties file contains information about the database connection and

other related information used by the Web services provider.

About this task

A group is a number of Web services operations that access a database. You can

have one group for each database or even multiple groups for the same database,

and within that group, you can define one or more DADX files. The DADX file,

which specifically defines the Web service contains the operations that execute the

Web service.

You can create the group.properties file by using the Rational Web Developer for

WebSphere Software.

Procedure

To define the group.properties file:

1. Choose a group name for the DADX group that reflects your application, such

as myapp_group.

2. From the groups directory, create a subdirectory with the name of the group

that is specified in the <servlet-name> element added in the web.xml file. The

subdirectory will contain the resources for this group.

3. In the group directory, create a group.properties file that defines the database

connection information and other common attributes for each group of DADX

Web services.

Chapter 2. Creating a Web services provider from a database 57

Example of a group.properties file

The following example shows what the group.properties might look like for the

new group:

group.properties example

myapp_group group properties

dbDriver=com.ibm.db2.jcc.DB2Driver

dbURL=jdbc:db2:sample

userID=

password=

namespaceTable=myapp.nst

autoReload=true

reloadIntervalSeconds=5

For Informix, use the following database driver and URL:

dbDriver=com.informix.jdbc.IfxDriver

dbURL=jdbc\:informix-sqli://::informixserver=

For OS/390 and z/OS, use the following database driver and URL:

dbDriver=COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver

dbURL=jdbc:db2os390:

Replace the dbURL value in the above example with the following choices:

Type 2 connection

 dbURL=jdbc:db2:<database name>

Type 4 connection

 dbURL=jdbc:db2:<http://<host>:<port>/<database name>

Parameters for the group.properties file

The group.properties file is a standard Java properties file. You must define the

group.properties with at least one parameter.

You define the group.properties based on the type of connection. There following

types of connections are used for group.propertes:

Connection pooling

Define group.properties using parameter initialContextFactory with

datasourceJNDI.

Regular JDBC database connections

Define group.properties using parameter dbURL with dbDriver.

If you define both types of connections, the Web application tries the data source

first. If WORF cannot obtain the data source, then it tries the JDBC. The complete

set of properties is listed below.

Database configuration parameters

There parameters are specific to the database configuration.

initialContextFactory

Used with datasourceJNDI. Required for WebSphere connection pooling. This

parameter specifies the Java class name of the JNDI initial context factory that

is used to locate the data source for the database. This parameter, along with

the datasourceJNDI parameter, enables connection pooling.

datasourceJNDI

Used with initialContextFactory. Required for WebSphere connection

pooling. The parameter specifies the JNDI name of the data source for the

58 Application Development Guide for Federated Systems

database. When you use this with the initialContextFactory parameter, the

parameter defines a data source for the database connection. This parameter

enables connection pooling. You must define either the data source or the Java

Database Connectivity (JDBC) connection.

dbDriver

Specifies the Java class name of the Java Database Connectivity (JDBC) driver

for connecting to the database.

dbURL

Used with dbDriver. This parameter specifies the JDBC uniform resource

locator (URL) of the database.

userID

The default is the user ID under which the Web services provider runs, which

can be the same user ID used for connecting to the database. This parameter

specifies the user ID for the database. The user ID is required for the DB2

universal JDBC driver that uses type 4 connections.

password

Used in conjunction with the user ID. This parameter specifies the password

for the database. There are algorithms that are available to help you encode

and decode your password. The password is required for the DB2 universal

JDBC driver that uses type 4 connections.

enableXmlClob

Specifies whether retrieveXML operations will use the CLOB-based XML

Extender stored procedures. The default value is true. This parameter is

available only for backward compatibility. For OS/390 and z/OS platforms,

either do not define this property, or always set the value to true.

Web Service configuration parameters

There parameters are specific to the Web service configuration.

groupNamespaceUri

Defines the target namespace in the generated Web service description

language (WSDL) and XML schema files (XSD). The target namespace is for

Web services in this group. The default is http://tempuri.org. To use the

default, you must remove the groupNamespaceURI from the group.properties

file. This parameter is only applicable to the RPC style encoding.

useDocumentStyle

Specifies which encoding to use. The default value is false, which means that

the Web services at run time use RPC encoding. If you set this value to true,

then the Web services at run time use document style and literal encoding. The

Web services provider contains samples that are set to use RPC style. For new

applications, use document style for maximum interoperability. The IBM Web

Service SOAP provider engine only supports document style encoding.

namespaceTable

Specifies the resource name of the namespace table. The parameter references a

Namespace Table (NST) resource that defines the mapping from DB2 XML

Extender DTDIDs to XML Schema (XSD) namespaces and locations.

Runtime configuration parameters

autoReload

Optional, but mandatory with reloadIntervalSeconds. Specifies whether to

reload a resource. Values can be true or false. The default value is false.

Chapter 2. Creating a Web services provider from a database 59

reloadIntervalSeconds

Optional, but mandatory with autoReload. Controls resource loading and

caching. It specifies the integer automatic reloading time interval in seconds.

The default is 0, which means that WORF checks for a newer resource on

every request.

The options autoReload and reloadIntervalSeconds control resource loading and

caching. If autoReload is absent or false, then there is no resource reloading, and

the application ignores reloadIntervalSeconds. If autoReload is true, then, when

WORF accesses a resource, such as a DADX file, it compares the current time with

the time at which the resource was previously loaded. If more than the value of

reloadIntervalSeconds has passed, then WORF checks the file system for a newer

version and reloads the changed resource. Automatic reloading is useful at

development time, in which case set reloadIntervalSeconds to zero. If the Web

services are in production, set autoReload to false, or set reloadIntervalSeconds to

a large value to avoid impacting server performance.

Sample servlet for iSeries

The sample applications that are provided with the Web services provider includes

a servlet that applies a style sheet to the generated XML. You can use this servlet

example for any combination of XML Web services and XSL style sheets for iSeries.

After you define the web.xml file and the group.properties file, you can use the

sample servlet. The servlet class and source are in the following directory:

 /QIBM/UserData/WebASAEs4/worf/

 installedApps/servicesApp.ear/

 services.war/WEB-INF/classes

The sample file contains the following setting:

serveServletsByClassnameEnabled="true"

Invoke the servlet by running the following file:

/QIBM/UserData/WebASAEs4/worf/

 installedApps/servicesApp.ear/

 services.war/WEB-INF/ibm-web-ext.xmi

You can recompile the servlet inside qshell by running the following compile

statement:

javac -J-Djava.ext.dirs=/qibm/proddata/webasaes4/lib

 -d . SampleXSLTServlet.java

Invoke the servlet from the Internet by running the following file:

http://system:port/services/servlet/

SampleXSLTServlet?XML=

http://system:port/services/travel/ZipCodes.dadx/

 findAll&XSL=

file:///home/zipcodes.xsl

The above example assumes that the zipcodes.xsl file is in the /home subdirectory.

Definition of a DADX file

A document access definition extension (DADX) file specifies how to create a Web

service. A Web service is a function that you invoke over the Web.

60 Application Development Guide for Federated Systems

You can create a Web service by using a set of operations that are defined by SQL

statements, stored procedure calls, or DAD files. Web services store XML

documents or retrieve XML documents, including some that are managed by DB2®

XML Extender. Web services that are specified in a DADX file are called DADX Web

services, or IBM® DB2 Web services.

WORF provides the run-time support for invoking DADX documents as Web

services. These Web services use the Apache Axis engine (Version 1.2) or the

WebSphere Web services engine. Both of these SOAP engines are supported by

WebSphere® Application Server and Apache Jakarta Tomcat.

The Web services developer creates the DADX document. The content of the

DADX file determines if you can use dynamic queries in your Web application. A

DADX file with a dynamic query services tag (</DQS>) contains only that tag

which acts as a switch to enable dynamic queries for that group only. If the DADX

file contains a dynamic query services tag (<DQS/>), then you can specify the SQL

operations from a browser or embed the operations in an application if you

installed the WORF test Web application. A non-dynamic DADX file defines a set

of predetermined SQL operations and contains information that is used to create

the Web service.

You can create DADX documents by using a simple text editor, or with tools that

are provided in WebSphere Studio with only minimal knowledge of XML or SQL.

Defining the Web service with the document access definition

extension file

The document access definition extension (DADX) file specifies a Web service. It

does this by using SQL statements, a list of parameters, and optionally, document

access definition (DAD) file references that define a set of operations.

You can define a set of dynamic Web service operations with a DADX file that

contains only the dynamic query service tag (<DQS/>). Operations are similar to

methods that you can invoke.

You can define the operations in a DADX Web service by the following operation

types:

v SQL Operations (non-dynamic)

<query>

Queries the database by using a select operation

<update>

Performs an update, insert or delete operation on the database

<call> Calls stored procedures
v SQL Operations (dynamic query services)

<getTables>

Retrieves a description of available tables.

<getColumns>

Retrieves a description of columns.

<executeQuery>

Issues a single SQL statement.

<executeUpdate>

Issues a single INSERT, UPDATE, DELETE.

Chapter 2. Creating a Web services provider from a database 61

<executeCall>

Calls a single stored procedure.

<execute>

Issues a single SQL statement.
v XML collection operations (requires DB2® XML Extender)

<retrieveXML>

Generates XML documents

<storeXML>

Stores XML documents

Syntax of the DADX file

The Document Access Definition Extension (DADX) file is an XML document. This

topic illustrates the syntax of the DADX file.

DADX syntax definitions and Figure 19 on page 63 describe the elements of the

DADX. The numbers next to the nodes and elements in DADX syntax definitions

identify the child groupings. The numbering scheme expresses the XML document

hierarchy. For example, when the identifiers change from 1.3 (result_set_metadata)

to 1.3.1 (column), this means that the column is a child of result_set_metadata. A

change from 1.1 (documentation) to 1.2 (implements) means that these elements are

siblings.

62 Application Development Guide for Federated Systems

0. Root element: <DADX>

Attributes:

xmlns:dadx

The namespace of the DADX.

xmlns:xsd

The namespace of the Extensible Markup Language (XML) Schema

specification

Children:

0.1 <documentation>

Specifies a comment or statement about the purpose and content of

the Web service. You can use XHTML tags.

1. DADX functions that specify non-dynamic operations

1.2 <implements>

Specifies the namespace and location of the Web service

description files. It allows the service implementer to

declare that the DADX Web service implements a standard

Web service described by a reusable WSDL document

defined elsewhere; for example, in an UDDI registry.

DADX -

dadx:documentation +

dadx:DQS

dadx:result_set_metadata -

dadx:implements

dadx:column

dadx:documentation

dadx:operation -

dadx:DAD_ref

dadx:collection_name

no_override

SQL_override

dadx:parameter

dadx:DAD_ref

dadx:collection_name

XML_override

SQL_query

dadx:XML_result

dadx:parameter

SQL_query

dadx:parameter
dadx:update

dadx:query

dadx:retrieveXML

dadx:storeXML

SQL_call

dadx:parameter

dadx:result_set

dadx:call

Figure 19. DADX syntax

Chapter 2. Creating a Web services provider from a database 63

1.3 <result_set_metadata>

Stored procedures can return one or more result sets. You

can include them in the output message. Metadata for a

stored procedure result set must be defined explicitly in

the non-dynamic DADX using the <result_set_metadata>

element. At run-time, you obtain the metadata of the result

set. The metadata must match the definition contained in

the DADX file.

Note: You can only invoke stored procedures that have

result sets with fixed metadata.

This restriction is necessary in order to have a well-defined

WSDL file for the Web Service. A single result set metadata

definition can be referenced by several <call> operations,

using the <result_set> element. The result set metadata

definitions are global to the DADX and must precede all of

the operation definition elements.

Attributes:

name Identifies the root element for the result set.

rowname

Used as the element name for each row of the

result set.

 Children:

1.3.1 <column>

Defines the column. The order of the columns must

match that of the result set returned by the stored

procedure. Each column has a name, type, and

nullability, which must match the result set.

 Attributes:

name Required. This specifies the name of the

column.

type Required if you do not specify element. It

specifies the type of column.

element

Required if you do not specify type. It

specifies the element of column.

as Optional. This provides a name for a

column.

nullable

Optional. Nullable is either true or false. It

indicates whether column values can be

null.

1.4 <operation>

Specifies a Web service operation. The operation element

and its children specify the name of an operation, and the

type of operation the Web service performs. Web services

can compose an XML document, query the database, or

call a stored procedure. A single DADX file can contain

64 Application Development Guide for Federated Systems

multiple operations on a single database or location. The

following list describes these elements.

v Attribute:

name A unique string that identifies the operation. The

string must be unique within the DADX file. For

example: "findByColorAndMinPrice"

v Children:

Document the operation with the following element:

1.4.1 <dadx:documentation>

Specifies a comment or statement about the

purpose and content of the operation. You can

use XHTML tags.

1.4.2 <retrieveXML>

 This element specifies to generate zero or one

XML documents from a set of relational tables

when using the XML collection access method.

Depending on whether you specify a DAD file

or an XML collection name, the operation calls

the appropriate XML Extender composition

stored procedure.

 Children:

– Specify which of these stored procedures you

want to use. You do this by passing either the

name of a DAD file, or the name of the

collection by using one of the following

elements:

1.4.2.1 <DAD_ref>

The content of this element is the

name and path of a DAD file. If you

specify a relative path for the DAD

file, then the application assumes that

the current working directory is the

group directory.

1.4.2.2 <collection_name>

The content of this element is the

name of the XML collection. You

define collections by using the XML

Extender administration interfaces, as

described in DB2 XML Extender

Administration and Programming.
– Specify override values with one of the

following elements:

1.4.2.3 <no_override/>

Specifies that the values in the DAD

file are not overridden. Required if

you do not specify either

<SQL_override> or <XML_override>.

Chapter 2. Creating a Web services provider from a database 65

1.4.2.4 <SQL_override>

Specifies to override the SQL

statement in a DAD file that uses SQL

mapping.

1.4.2.5 <XML_override>

Specifies to override the XML

conditions in a DAD file that uses

RDB mapping.
– Define parameters by using the following

element:

1.4.2.6 <parameter>

Required when referencing a

parameter in an <SQL_override> or

an <XML_override> element. This

element specifies a parameter for an

operation. Use a separate parameter

element for each parameter referenced

in the operation. Each parameter

name must be unique within the

operation. A parameter must have its

contents defined by either an XML

Schema element (a complex type) or a

simple type.

 Attributes:

name The unique name of the

parameter.

element

Use the ″element″ attribute to

specify an XML Schema

element.

type Use the ″type″ attribute to

specify a simple type.

kind Specifies whether a parameter

passes input data, returns

output data, or does both. The

valid values for this attribute

are:

- in

1.4.3 <storeXML>

 This element specifies to store (decompose) an

XML document in a set of relational tables using

the XML collection access method. Depending on

whether you specify a DAD file or an XML

collection name, the operation calls the

appropriate XML Extender decomposition stored

procedure. Children:

– Specify which of these stored procedures you

want to use. You do this by passing either the

name of a DAD file, or the name of the

collection by using one of the following

elements:

66 Application Development Guide for Federated Systems

1.4.3.1 <DAD_ref>

The content of this element is the

name and path of a DAD file. If you

specify a relative path for the DAD

file, the application assumes that the

current working directory is the group

directory.

1.4.3.2 <collection_name>

The content of this element is the

name of an XML collection. You

define collections by using the XML

Extender administration interfaces, as

described in DB2 XML Extender

Administration and Programming.

1.4.4 <query>

Specifies a query operation. You define the

operation by using an SQL SELECT statement in

the <SQL_select> element. The statement can

have zero or more named input parameters. If

the statement has input parameters then each

parameter is described by a <parameter>

element.

 This operation maps each database column from

the result set to a corresponding XML element.

You can specify XML Extender user-defined

types (UDTs) in the <query> operation.

However, this requires an <XML_result> element

and a supporting document type definition

(DTD) that defines the type of the XML column

queried.

 Children:

1.4.4.1 <SQL_query>

Specifies an SQL SELECT statement.

1.4.4.2 <XML_result>

Optional. This defines a named column

that contains XML documents. The XML

Schema element of its root must define

the document type.

 Attributes:

name Specifies the root element of the

XML document stored in the

column.

element

Specifies the particular element

within the column

1.4.4.3 <parameter>

Required when referencing a parameter

in the <SQL_query> element. It specifies

a parameter for an operation. Use a

separate parameter element for each

parameter referenced in the operation.

Chapter 2. Creating a Web services provider from a database 67

Each parameter name must be unique

within the operation. A parameter must

have its contents defined by one of the

following: an XML Schema element (a

complex type) or a simple type.

 Attributes:

name The unique name of the

parameter.

element

Use the ″element″ attribute to

specify an XML Schema element.

type Use the ″type″ attribute to

specify a simple type.

kind Specifies whether a parameter

passes input data, returns output

data, or does both. The valid

values for this attribute are:

– in

1.4.5 <update>

The operation is defined by an SQL INSERT,

DELETE, or UPDATE statement in the

<SQL_update> element. The statement can have

zero or more named input parameters. If the

statement has input parameters then each

parameter is described by a <parameter>

element.

 Children:

1.4.5.1 <SQL_update>

This specifies an SQL INSERT, UPDATE,

or DELETE statement.

1.4.5.2 <parameter>

Required when referencing a parameter

in the <SQL_update> element. It

specifies a parameter for an operation.

Use a separate parameter element for

each parameter referenced in the

operation. Each parameter name must be

unique with the operation. A parameter

must have its contents defined by one of

the following: an XML Schema element

(a complex type) or a simple type.

 Attributes:

name The unique name of the

parameter.

element

Use the ″element″ attribute to

specify an XML Schema element.

type Use the ″type″ attribute to

specify a simple type.

68 Application Development Guide for Federated Systems

kind Specifies whether a parameter

passes input data, returns output

data, or does both. The valid

values for this attribute are:

– in

1.4.6 <call>

Specifies a call to a stored procedure. The

processing is similar to the update operation, but

the parameters for the call operation can be

defined as ’in’, ’out’, or ’in/out’. The default

parameter kind is ’in’. The ’out’ and ’in/out’

parameters appear in the output message.

1.4.6.1 <SQL_call>

Specifies a stored procedure call.

1.4.6.2 <parameter>

Required when referencing a parameter

in an <SQL_call> element. This specifies

a parameter for an operation. Use a

separate parameter element for each

parameter referenced in the operation.

Each parameter name must be unique

within the operation. A parameter must

have its contents defined by one of the

following: an XML Schema element (a

complex type) or a simple type.

 Attributes:

name The unique name of the

parameter.

element

Use the ″element″ attribute to

specify an XML Schema element.

type Use the ″type″ attribute to

specify a simple type.

kind Specifies whether a parameter

passes input data, returns output

data, or does both. The valid

values for this attribute are:

– in

– out

– in/out

1.4.6.3 <result_set>

This defines a result set and must follow

any <parameter> elements. The result set

element has a name which must be

unique among all the parameters and

result sets of the operation. It must refer

to a <result_set_metadata> element. One

<result_set> element must be defined for

each result set returned from the stored

procedure.

Chapter 2. Creating a Web services provider from a database 69

Attributes:

name A unique identifier for the result

sets in the SOAP response.

metadata

A result set metadata definition

in the DADX file. The identifier

must refer to the name of an

element.

2. <DQS>

Dynamic query services.

A simple DADX file

The following example is a simple DADX file that contains one operation with an

SQL query.

This DADX file is for non-dynamic queries. See Configuring and running dynamic

database queries as part of Web services provider for an example of a DADX file

used to enable dynamic query services.

Figure 20 shows a DADX file that defines a simple Web service:

 This simple DADX file defines a Web service with a single operation named

listDepartments which lists the contents of the DEPARTMENT table. The

operation name identifies the Web service activity, and is similar to a method name

in programming languages.

Using overrides in the DADX file

The DADX file can override XML values and SQL statements in the DAD file by

using the <XML_override> and <SQL_override> elements.

The type of override is determined by whether the DAD file uses SQL mapping or

RDB mapping. If you do not need to override the DAD values, use the

<no_override/> element, shown in Figure 35 on page 105.

The following example uses an SQL override statement.

<?xml version="1.0" encoding="UTF-8"?>

<DADX

 xmlns="http://schemas.ibm.com/db2/dxx/dadx"

 >

 <documentation>

 Simple DADX example that accesses the SAMPLE database.

 </documentation>

 <operation name="listDepartments">

 <documentation>

 Lists the departments.

 </documentation>

 <query>

 <SQL_query>SELECT * FROM DEPARTMENT</SQL_query>

 </query>

 </operation>

</DADX>

Figure 20. Simple DADX file

70 Application Development Guide for Federated Systems

Although you can override the SQL statement, the new SQL statement must

produce a result set that is compatible with the SQL mapping defined in the DAD

file. For example, the column names that appear in the DAD file must also appear

in the SQL override.

If the DAD file uses RDB node mapping, you have to override the RDB nodes by

using the <XML_override> element. RDB node elements define DB2 tables,

columns, and conditions that are to contain XML data. The example in Figure 22

on page 72 shows a DADX file that references an RDB node DAD file. The

<XML_override> element content overrides the conditions specified in the DAD

file. The override string can contain input parameters using the host variable

syntax. You must define the name and type of all parameters in a list of parameter

elements that are uniquely named within this operation. In this example, the

override parameter overrides the query by limiting the price to be greater than

$50.00 and restricting the date to be greater than 1998-12-01.

<?xml version="1.0"?>

<DADX xmlns="http://schemas.ibm.com/db2/dxx/dadx"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xhtml="http://www.w3.org/1999/xhtml">

 <documentation >

 Provides queries for part order information at myco.com.

 See <xhtml:a href="../documentation/PartOrders.html" target="_top">

 PartOrders.html</xhtml:a> for more information.

 </documentation>

 <operation name="findAll">

 <documentation >

 Returns all the orders with their complete details.

 </documentation>

 <retrieveXML>

 <DAD_ref>getstart_xcollection.dad</DAD_ref>

 <SQL_override>

 select o.order_key, customer_name, customer_email,

 p.part_key, color, quantity, price, tax, ship_id, date, mode

 from order_tab o, part_tab p,

 table(select substr(char(timestamp(generate_unique())),16)

 as ship_id, date, mode, part_key from ship_tab) s

 where p.order_key = o.order_key and s.part_key = p.part_key

 order by order_key, part_key, ship_id

 </SQL_override>

 </retrieveXML>

 </operation>

</DADX>

Figure 21. Example of a DADX file that generates an XML document with an SQL override

Chapter 2. Creating a Web services provider from a database 71

Declaring and referencing parameters in the DADX file

You declare parameters with a <parameter> element. The parameters have simple

XML schema file (XSD) types that correspond to the built-in SQL data types.

You can use parameters in each of the operations. The <SQL_query>,

<SQL_update>, and <SQL_call> statements for the SQL operations can reference

parameters. The Extensible Markup Language (XML) and SQL overrides that you

use in the <retrieveXML> and <storeXML> operations can also reference

parameters. You declare the parameters by using the <parameter> element. The

parameters have simple XML Schema types that correspond to the built-in SQL

data types. Table 2 describes the supported types.

 Table 2. Supported XML Schema and SQL types

XML Schema Simple Type SQL Type

string CHAR, VARCHAR, CLOB, LONGVARCHAR

decimal DECIMAL, NUMERIC

int INTEGER

short SMALLINT

float FLOAT

double REAL, DOUBLE PRECISION

date DATE

time TIME

timestamp TIMESTAMP

long BIGINT

byte TINYINT

<?xml version="1.0"?>

<DADX xmlns="http://schemas.ibm.com/db2/dxx/dadx"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xhtml="http://www.w3.org/1999/xhtml">

 <documentation >

 Provides queries for part order information at myco.com.

 See <xhtml:a href="../documentation/PartOrders.html" target="_top">

 PartOrders.html</xhtml:a> for more information.

 </documentation>

 <operation name="findByExtendedPriceAndShipDate">

 <documentation >

 Returns all the orders with an extended price greater than $50.00

 and a ship date later than 1998-12-01.

 </documentation>

<retrieveXML>

 <DAD_ref>order_rdb.dad</DAD_ref>

 <XML_override>

 /Order/Part/ExtendedPrice > 50.00 AND

 Order/Part/Shipment/ShipDate > ’1998-12-01’

 </XML_override>

 </retrieveXML>

</operation>

</DADX>

Figure 22. Example of a DADX file that generates an XML document with an XML override

72 Application Development Guide for Federated Systems

To reference a parameter, use a colon prefix. For example:

<SQL_query>

 select * from order_tab where customer_name =:customer_name

</SQL_query>

To define the parameter, use the <parameter> element, as in the following

example:

<parameter name="customer_name" type="xsd:string"/>

You must define each parameter that you reference with a <parameter> element.

The name attribute for this element identifies the parameter and must be unique

within the operation.

The example in Figure 23 shows a query operation that retrieves a set of relational

data by using an SQL SELECT statement. The statement contains one input

parameter by using the parameter syntax.

<operation name="findCustomerOrders">

 <documentation>Returns all the orders for a given customer.

 </documentation>

 <query>

 <SQL_query>select * from order_tab where customer_name =

 :customer_name</SQL_query>

 <parameter name="customer_name" type="xsd:string"/>

 </query>

 </operation>

Figure 23. Query operation with a parameter

Chapter 2. Creating a Web services provider from a database 73

The example in Figure 24 shows parameters in an SQL override that are used by a

retrieveXML operation:

 You can modify the WHERE clause of the SQL statement to include search

conditions. The SQL override can include one or more parameters that are

identified by using a colon. In this example, findByColorAndMinPrice references

:color and :minprice.

DADX operation examples

The following samples show DADX files with query, update, call, retrieve, and

store operations.

Example 1: Query operation

This example shows a Query operation, using the default tags. This example does

not need XML Extender. This operation selects all of the orders for a given

customer. To run this sample, you need the sales_db XML Extender sample

database.

<operation name="findByColorAndMinPrice">

 <documentation>Returns all the orders that have the specified color and

 at least the specified minimum price.

 </documentation>

 <retrieveXML>

 <DAD_ref>getstart_xcollection.dad

</DAD_ref>

 <SQL_override>

 select o.order_key, customer_name, customer_email,

 p.part_key, color, quantity, price, tax, ship_id, date, mode

 from order_tab o, part_tab p,

 table(select substr(char(timestamp(generate_unique())),16)

 as ship_id, date, mode, part_key from ship_tab) s

 where p.order_key = o.order_key and s.part_key = p.part_key

 and color = :color and price >= :minprice

 order by order_key, part_key, ship_id

 </SQL_override>

 <parameter name="color" type="xsd:string">

 <parameter name="minprice" type="xsd:decimal">

 </retrieveXML>

 </operation>

Figure 24. SQL override used by a retrieveXML operation

74 Application Development Guide for Federated Systems

A list of parameter elements that are uniquely named within this operation must

define the input parameters. If you need more control over the mapping, then you

can use a DAD file.

You can use the Query operation to use the XML Extender user-defined types

(UDT) and user-defined functions (UDF). This operation allows you to query,

extract, and update data from an XML column that contains XML documents.

These XML documents require that you create a document type definition (DTD)

that defines the type of the <XML_result> element. This element specifies the

column name and the root element of the XML document contained in it.

The example in Figure 26 on page 76 shows a Query operation that uses the

VARCHAR UDT declared by the <XML_result> element. The retrieveOrders

operation retrieves all the XML order documents from the SALES_TAB table by

using the UDF db2xml.varchar. You store the documents by using the XML

Extender UDT XMLVARCHAR.

<?xml version="1.0"?>

 <DADX xmlns="http://schemas.ibm.com/db2/dxx/dadx"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <documentation>

 mycompany part orders service.

 </documentation>

 <implements namespace="http://www.poia.org/part_orders.wsdl"

 location="http://www.poia.org/part_orders.wsdl"/>

<operation name="findCustomerOrders">

 <documentation>Returns all the orders for a given customer.

 </documentation>

 <query>

 <SQL_query>select * from order_tab

 where customer_name = :customer_name

 </SQL_query>

 <parameter name="customer_name" type="xsd:string"/>

 </query>

 </operation>

Figure 25. DADX with Query operation

Chapter 2. Creating a Web services provider from a database 75

When you have XML documents in a column and you want the WSDL to refer to

the type of this document, you can use the XML_result tag. In Figure 26 the

example specifies that the ORDER column contains fragments of element

dtd1:Order. The element <XML_result name = ″ORDER″ element = ″dtd1:Order″/>

refers to the namespace declaration. XML Extender stores XML documents that

have no namespaces and that are defined by DTDs. Web services use XML

Schemas (XSD) instead of DTDs, and make use of namespaces. You associate a

namespace with a DTD by making an entry in the namespace table. WORF adds

the namespace when it retrieves an XML document and removes the namespace

when it stores a document. WORF also automatically translates DTDs to XSD. The

line, <XML_result name = ″ORDER″ element = ″dtd1:Order″/> defines column

information in file order.dtd. The specific declaration that it refers to is in the

following example:

<?xml encoding="US-ASCII"?>

<!ELEMENT Order (Customer, Part+)>

<!ATTLIST Order key CDATA #REQUIRED>

...

To point to the DTD, use a namespace table file, (NST) file. Refer to Figure 27 on

page 77 as an example.

<?xml version="1.0"?>

<DADX xmlns="http://schemas.ibm.com/db2/dxx/dadx"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:dtd1="http://schemas.myco.com/sales/order.dtd">

 <documentation>

 Queries part orders at myco.com.

 </documentation>

<operation name="retrieveOrders">

 <documentation>

 Retrieves all the Order documents.

 </documentation>

 <query>

 <SQL_query>

 select db2xml.varchar(order) from sales_tab

 </SQL_query>

 <XML_result name="ORDER" element="dtd1:Order"/>

 </query>

 </operation>

</DADX>

Figure 26. Query operation with UDF and UDT

76 Application Development Guide for Federated Systems

You must reference this file in the group.properties file.

Example 2: Update operation

The example in Figure 28 shows an operation that updates the electronic mail

(e-mail) address of a customer for a given order. The update operation can contain

SQL INSERT, DELETE, or UPDATE statements in the <SQL_update> element.

Example 3: Call operation

If your stored procedure returns result sets, you must define these result sets in the

result_set_metadata tag in the DADX file. This is to let WORF generate the WSDL

and XML schema files (XSD) for this Web service operation. Figure 29 on page 78

shows the definition of a result set metadata that is referenced two times.

<?xml version="1.0"?>

 <namespaceTable xmlns="http://schemas.ibm.com/db2/dxx/nst">

 <mapping dtdid="c:\dxx\samples\dtd\getstart.dtd"

 namespace="http://schemas.ibm.com/db2/dxx/samples/dtd/getstart.dtd"

 location="/dxx/samples/dtd/getstart.dtd/XSD"/>

 <mapping dtdid="getstart.dtd"

 namespace="http://schemas.myco.com/sales/getstart.dtd"

 location="/getstart.dtd/XSD"/>

 <mapping dtdid="order.dtd"

 namespace="http://schemas.myco.com/sales/order.dtd"

 location="/order.dtd/XSD"/>

 </namespaceTable>

Figure 27. NST file

 <operation name="updateOrderEmail">

 <documentation>Updates the email address for an order.

 </documentation>

 <update>

 <SQL_update>update order_tab set customer_email = :email

 where order_key = :key</SQL_update>

 <parameter name="key" type="xsd:int"/>

 <parameter name="email" type="xsd:string"/>

 </update>

 </operation>

 </DADX>

Figure 28. Update operation

Chapter 2. Creating a Web services provider from a database 77

You can also call a stored procedure by using the format shown in Figure 30.

Example 4: RetrieveXML operation

The DADX file in Figure 31 on page 79 implements one retrieveXML operation by

using the stored procedure dxxGenXMLCLOB.

<DADX xmlns="http://schemas.ibm.com/db2/dxx/dadx"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<result_set_metadata name="employeeSalaryReport" rowName="employee">

 <column name="NAME" type="VARCHAR" nullable="true" />

 <column name="JOB" type="CHAR" nullable="true" />

 <column name="3" as="SALARY" type="DOUBLE" nullable="true" />

</result_set_metadata>

<operation name="twoResultSets">

<call>

<SQL_call>CALL TWO_RESULT_SETS (:salary, :sqlCode)

</SQL_call>

 <parameter name="salary" type="xsd:double" kind="in" />

 <parameter name="sqlCode" type="xsd:int" kind="out" />

 <result_set name="employees1" metadata="employeeSalaryReport" />

 <result_set name="employees2" metadata="employeeSalaryReport" />

 </call>

 </operation>

</DADX>

Figure 29. Definition of a result set metadata referenced two times

<operation name="callProc1">

 <documentation>Call the Proc1 stored procedure.

 </documentation>

 <call>

 <SQL_call>

 CALL Proc1 (:x, :y, :z)

 </SQL_call>

 <parameter name="x" type="xsd:string" kind="in"/>

 <parameter name="y" type="xsd:int" kind="in/out"/>

 <parameter name="z" element="dtd1:Order" kind="out"/>

 </call>

</operation>

Figure 30. DADX with alternate Call operation

78 Application Development Guide for Federated Systems

The operation in Figure 31 generates XML documents that are based on the

mapping in the getstart_xcollection.dad file. The operation specifies an SQL

override. The operation replaces the SQL statement defined in the DAD file and

references two parameters in the override statement: :color and :minprice.

The DAD file for this example is in the appendix of DB2 XML Extender

Administration and Programming.

Example 5: StoreXML operation

This example in Figure 32 on page 80 shows a DADX file that references a DAD by

using RDB_node mapping, getstart_xcollection_rdb.dad.

<?xml version="1.0"?>

<DADX xmlns="http://schemas.ibm.com/db2/dxx/dadx"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <documentation>

 mycompany part orders service.

 </documentation>

 <operation name="findByColorAndMinPrice">

 <documentation>Returns all the orders that have the specified color

 and at least the specified minimum price.</documentation>

 <retrieveXML>

 <DAD_ref>getstart_xcollection.dad</DAD_ref>

 <SQL_override>

 select o.order_key, customer_name, customer_email,

 p.part_key, color, quantity, price, tax, ship_id, date, mode

 from order_tab o, part_tab p,

 table(select substr(char(timestamp(generate_unique())),16)

 as ship_id, date, mode, part_key from ship_tab) s

 where p.order_key = o.order_key and s.part_key = p.part_key

 and color = :color and price >= :minprice

 order by order_key, part_key, ship_id

 </SQL_override>

 <parameter name="color" type="xsd:string"/>

 <parameter name="minprice" type="xsd:decimal"/>

 </retrieveXML>

 </operation>

</DADX>

Figure 31. DADX with retrieveXML operation

Chapter 2. Creating a Web services provider from a database 79

The storeXML operation is implemented by the dxxInsertXML stored procedure if

a <collection_name> element is used instead of a <DAD_ref> element. It performs

the same operations as the dxxShredXML procedure, but uses the name of an XML

collection instead of a DAD file.

Web service provider operations used with DADX files

DADX files support three kinds of Web service operations: non-dynamic SQL

operations, dynamic SQL operations, and XML collection operations.

SQL-based querying is the ability to send SQL statements, including stored

procedure calls, to DB2® and to return results with a default tagging. Your

application returns the data by using only a simple mapping of SQL data types,

using column names as elements.

SQL operations: non-dynamic

The SQL operations can be non-dynamic. Non-dynamic operations are

those that are predefined within the DADX file. There are three elements

that make up the predefined SQL operations type:

<query>

Queries the database

<update>

Inserts into a database, deletes from a database, or updates a

database

<call> Calls stored procedures that can return 0 or more result sets

SQL operations: dynamic

The SQL operations can be dynamic operations, depending on the content

of the DADX file. Dynamic operations are those that are generated in a

SOAP message with no predefined SQL operations. The following elements

are dynamic operations:

<getTables>

Retrieves a description of available tables.

<getColumns>

Retrieves a description of columns.

<?xml version="1.0"?>

 <DADX xmlns="http://schemas.ibm.com/db2/dxx/dadx"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <documentation>

 mycompany part orders service.

 </documentation>

 <implements namespace="http://www.poia.org/part_orders.wsdl"

 location="http://www.poia.org/part_orders.wsdl"/>

 <operation name="storeOrder">

 <documentation>Stores an automotive part order.

 </documentation>

 <storeXML>

 <DAD_ref>getstart_xcollection_rdb.dad</DAD_ref>

 </storeXML>

 </operation>

 </DADX>

Figure 32. DADX with StoreXML operation

80 Application Development Guide for Federated Systems

<executeQuery>

Issues a single SQL statement.

<executeUpdate>

Issues a single INSERT, UPDATE, DELETE.

<executeCall>

Calls a single stored procedure.

<execute>

Issues a single SQL statement.

XML collection operations (requires DB2 XML Extender)

These storage and retrieval operations help you to map XML document

structures to DB2 Universal Database™ tables. You can either compose

XML documents from existing DB2 data, or decompose (storing untagged

elements or attribute content) XML documents into DB2 data. This method

is useful for data interchange applications, particularly when the

application frequently updates the contents of XML documents.

 There are two elements that make up the XML collection operation type:

<retrieveXML>

Generates XML documents

<storeXML>

Stores XML documents

 The DAD file provides fine-grained control over the mapping of XML

documents to a DB2 database for both storage and retrieval.

XML schema for the DADX file

The following XML schema, dadx.xsd, describes the DADX. All of the WORF

schema files are in the dxxworf.zip file, which is part of the sqllib\samples\
webservices directory.

Chapter 2. Creating a Web services provider from a database 81

<?xml version="1.0" encoding="UTF-8"?>

<schema targetNamespace="http://schemas.ibm.com/db2/dxx/dadx"

 xmlns:dadx="http://schemas.ibm.com/db2/dxx/dadx"

 xmlns="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified" xml:lang="en">

 <annotation>

 <documentation>

 A Document Accession Definition Extension (DADX)

 document defines a Web Service

 that is implemented by operations that

 access a relational database and that optionally use

 stored procedures, types and functions provided

 by the DB2 XML Extender.

 </documentation>

 </annotation>

 <element name="DADX">

 <annotation>

 <documentation>

 Defines a Web Service.

 The Web Service is described by an optional

 WSDL documentation element.

 The Web Service may implement a set of WSDL

 bindings defined elsewhere.

 The Web Service consists of one or more

 uniquely named operations.

 </documentation>

 </annotation>

<complexType>

 <sequence>

 <element ref="dadx:documentation"

 minOccurs="0" maxOccurs="unbounded"/>

 <choice>

 <element ref="dadx:DQS"

 minOccurs="0"/>

 <sequence>

 <element ref="dadx:implements" minOccurs="0"/>

 <element ref="dadx:result_set_metadata"

 minOccurs="0" maxOccurs="unbounded"/>

 <element ref="dadx:operation"

 maxOccurs="unbounded"/>

 </sequence>

 </choice>

 </sequence>

 </complexType>

 <key name="result_set_metadataNames">

 <selector xpath="dadx:result_set_metadata"/>

 <field xpath="@name"/>

 </key>

 <keyref name="resultSetMetatdata"

 refer="dadx:result_set_metadataNames">

 <selector xpath="dadx:operation/dadx:call/dadx:result_set"/>

 <field xpath="@metadata"/>

 </keyref>

 <unique name="operationNames">

 <selector xpath="dadx:operation"/>

 <field xpath="@name"/>

 </unique>

 </element>

<element name="DQS">

 <annotation>

 <documentation>

 Defines the DQS tag.

 </documentation>

 </annotation>

 <complexType/>

 </element>

 <element name="documentation">

 <annotation>

 <documentation>

 Defines WSDL documentation for the Web service or an operation.

</documentation>

82 Application Development Guide for Federated Systems

Web services encoding algorithm

This is an algorithm that encodes and decodes the password within the

group.properties file.

1. Convert the clear text information into a sequence of data bytes by using UTF-8

character encoding. Let L be the length of the data byte sequence.

2. Convert the data bytes into a further sequence of data bytes, data8, that is 8

times longer. You compute byte k of data8 as follows. Let k = j * L + i where 0

<= i < L and 0 <= j < 8. First mask bit j of data byte i. Second, exclusive or this

with k. This step distributes the bits of each data byte throughout the length of

the data8 sequence.

3. Apply the standard base64 encoding algorithm to data8. This step renders the

bytes as printable characters and also increases the length by a factor of

four-thirds (4/3).

4. Prefix the encoded string with encoded: to denote that it has been encoded.

Web services command reference

You can use Web services provider commands to encode passwords, validate a

DADX file and validate a DAD file.

Encoder

Encodes or decodes a password in the group.properties file.

v Example of encoding (assumes that worf.jar is listed in the

CLASSPATH):

 java com.ibm.etools.webservice.rt.util.Encoder

 -in group.properties -out group.properties

v Example of decoding (assumes that worf.jar is listed in the

CLASSPATH):

java com.ibm.etools.webservice.rt.util.Encoder

 -action decode -in group.properties -out group.properties

Check_install

Validates a DADX file.

v Example:

java com.ibm.etools.webservice.util.Check_install

 [-srv] [-schdir pathToSchemasDir]

 [-sch schemaLocations] [-out outputFile] fileToCheck

dadchecker

Validates a DAD file.

v Example:

java dadchecker.Check_dad_xml [-dad | -xml] [-all]

 [-dup dupName] [-enc encoding][-dtd dtdPath]

 [-xstruct xmlDocument] [-out outputFile] fileToCheck

Chapter 2. Creating a Web services provider from a database 83

84 Application Development Guide for Federated Systems

Chapter 3. Dynamic database queries that use the Web

services provider

With dynamic query services you can dynamically build and submit queries at run

time that select, insert, update and delete application data, and call stored

procedures rather than run queries that are predefined at deployment time.

A Web application can use the Web services interface to access a database and

extract information about the tables and columns that are available. Then, the

application can query the tables and modify the data in the database through Web

services. The Web application can also perform data definition language actions on

the database, such as creating tables. By using the dynamic query services of the

Web services provider, Web applications can be more flexible.

WORF can generate two styles of Web services description language files (WSDL)

from the DADX files that contain a dynamic query service tag (<DQS/>):

v A WSDL file that uses the document-oriented information style

v A WSDL file that uses the procedure-oriented information style (RPC)

The style that is generated is defined on a group level and depends on the

existence of useDocumentStyle=true in the group.properties file. For more

information about the Web services description language information styles, look

in the Web services description language specifications on your browser. The

WSDL file contains service, port, and definition information. Dynamic query tags

in the DADX files do not affect static DADX functions.

Consider using the dynamic query service when you do not know the query

search criteria until you run your application.

The dynamic query component of the Web services provider supports Web service

operations that are generally defined by the following categories:

Obtain metadata

You can retrieve the tables that exist in a database and the column

information for those tables.

Execute DDL

You can issue a CREATE TABLE statement.

Execute DML

You can issue SELECT, INSERT, UPDATE and DELETE statements, and the

CALL statement to run stored procedures.

The server administrator controls access to a specific database by defining a group

with specific user ID and password settings in the group.properties file. The

administrator can also create a separate WORF instance to handle access to a

database.

© Copyright IBM Corp. 2005, 2007 85

http://www.w3.org/TR/wsdl

Configuring and running dynamic database queries as part of Web

services provider

With dynamic query services, you can build, execute stored procedures and submit

database queries at run time that access a previously deployed Web service. You no

longer need to define all of your database queries in your Document Access

Definition Extension (DADX) file.

Before you begin

v Ensure that a group.properties file exists for the group in which you want to run

dynamic Web queries.

v The Web application must establish a connection to the target database for each

Web service operation that is defined in the Web services description language

(WSDL) document.

v You must ensure that the XML schema description file, db2WebRowSet.xsd is

included in the context root of your Web application, unless you define an

import definition in the WSDL. The db2WebRowSet.xsd file is included in the

dxxworf.zip file.

Restrictions

v When your application uses the dynamic query services of the Web services

provider, the application cannot use cursors or perform any operation that

assumes a state on the server. You must obtain your results in a single query.

v The XML tag (<DQS/>) that identifies a dynamic query service operation cannot

coexist with any DADX-specific Web service definitions within the same file.

About this task

You can run dynamic queries at the group level, or within the scope of the group

directory, based on the information in the group.properties file.

Procedure

To prepare your Web services environment to run dynamic queries on a DB2 with

Web services provider:

1. Create a DADX file that includes the XML tag <DQS/>. This tag enables a

group to perform dynamic queries. No other tag is needed in the DADX file.

2. Save the file in the directory of the group for which you will run dynamic

queries.

3. Using the WSDL, develop a client for the application. The client must contain

at least the following information:

v A group name

v The name of the DADX file, such as mydqs.dadx

v A Web service operation, such as getTables

4. Modify the client to issue one of the accepted DQS operations, such as the

getTables operation.

5. Run the client that issues the getTables operation.

The result of the query is metadata that describes the rows and columns of the

table, and the data that is contained in the tables. The SQL statements run in

autocommit mode. The client can also call a dynamic query service in other

groups. The only information that needs to change is the endpoint URL. However,

86 Application Development Guide for Federated Systems

clients are only compatible for either an RPC style WSDL or a document style

WSDL. You cannot use a dynamic query services client that is defined by an RPC

style WSDL for a group that uses a document style WSDL.

Dynamic query services-example queries

This topic shows how to use dynamic query services.

Example 1: the DADX file

In the following example, the DADX file is named mydqs.dadx. The file

mydqs.dadx is in the directory of the group for which you will execute dynamic

queries.

<?xml version="1.0"?>

<DADX xmlns="http://schemas.ibm.com/db2/dxx/dadx">

 <documentation>

 This is optional documentation about DQS

 </documentation>

 <DQS/>

</DADX>

Example 2: Running the dynamic query from a browser

The following example is a simple dynamic query that you can run from a

browser. You can also include this statement in an application. The required

information for a dynamic query in Web services provider is in bold print. The

Web service operation in this example is executeQuery. The parameter associated

with the operation is queryInput. The statement fetches all rows of column

lastname from table employee:

http://localhost:9080/services/<group_name>

 /somefile.dadx/executeQuery?queryInputParameter

 =select%20lastname%20from%20employee

The example issues a GET binding request rather than a complete SOAP envelope.

. The following output is from the executeQuery operation and it is defined by the

db2WebRowSet schema definition:

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Body>

 <ns1:executeQueryResponse

 xmlns:ns1="http://schemas.ibm.com/db2/dqs">

 <queryOutputParameter>

 <db2WebRowSet

 xmlns="http://schemas.ibm.com/db2/dqs/db2WebRowSet"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<metadata>

 <column-count>14</column-count>

 <column-definition>

 <column-index>1</column-index>

 <nullable>0</nullable>

 <column-name>EMPNO</column-name>

 <column-precision>6</column-precision>

 <column-scale>0</column-scale>

 <column-type>CHAR</column-type>

 <column-type-name>CHAR</column-type-name>

 <xml-type>string</xml-type>

 </column-definition>

 <column-definition>

 <column-index>2</column-index>

Chapter 3. Dynamic database queries that use the Web services provider 87

<nullable>0</nullable>

 <column-name>FIRSTNME</column-name>

 <column-precision>12</column-precision>

 <column-scale>0</column-scale>

 <column-type>VARCHAR</column-type>

 <column-type-name>VARCHAR</column-type-name>

 <xml-type>string</xml-type>

 </column-definition>

...

 <column-definition>

 <column-index>14</column-index>

 <nullable>1</nullable>

 <column-name>COMM</column-name>

 <column-precision>9</column-precision>

 <column-scale>2</column-scale>

 <column-type>DECIMAL</column-type>

 <column-type-name>DECIMAL</column-type-name>

 <xml-type>decimal</xml-type>

 </column-definition>

...

 <column-definition>

 <column-index>14</column-index>

 <nullable>1</nullable>

 <column-name>COMM</column-name>

 <column-precision>9</column-precision>

 <column-scale>2</column-scale>

 <column-type>DECIMAL</column-type>

 <column-type-name>DECIMAL</column-type-name>

 <xml-type>decimal</xml-type>

 </column-definition>

</metadata>

</data>

</db2WebRowSet>

</queryOutputParameter>

 </ns1:executeQueryResponse>

 </soapenv:Body>

</soapenv:Envelope>

Example 3: Importing db2WebRowSet.xsd

When the group contains a dynamic query services DADX, the db2WebRowSet.xsd

file must be accessible to Web services consumers. To ensure the location of the

db2WebRowSet.xsd file, the group.imports file defines the necessary schema

locations. The following is an example of a group.imports file to import

db2WebRowSet.xsd. This example assumes that you do not have file

db2WebRowSet.xsd in your local groups directory:

<?xml version="1.0" encoding="UTF-8"?>

<imports

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:import namespace="http://schemas.ibm.com/db2/dqs/db2WebRowSet"

 schemaLocation="http://myServer.myCo.com/schemas/misc/ibm/db2WRS.xsd"/>

</imports>

If no group.imports file exists, then WORF generates the default import elements

in the WSDL only for the dynamic query services. In this case, WORF assumes that

the db2WebRowSets.xsd file is in the following location:

http://<server>:<port>/<contextRoot>/db2WebRowSet.xsd

Example 4: getTables

The following is an example of the getTables operation:

88 Application Development Guide for Federated Systems

<?xml version="1.0" encoding="UTF-8"?>

 <SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <SOAP-ENV:Body>

 <ns0:getTables

 xmlns:ns0="http://schemas.ibm.com/db2/dqs">

 <tablesInputParameter>

 <tablesInputData>

 <schemaPattern>MSCHENK</schemaPattern>

 <tableNamePattern>EMPLOYEE</tableNamePattern>

 </tablesInputData>

 </tablesInputParameter>

 </ns0:getTables>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Example 5: getColumns

The following is example of the getColumns operation:

<?xml version="1.0" encoding="UTF-8"?>

 <SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <SOAP-ENV:Body>

 <ns0:getColumns

 xmlns:ns0="http://schemas.ibm.com/db2/dqs">

 <columnsInputParameter>

 <columnsInputData>

 <schemaPattern>MSCHENK</schemaPattern>

 <tableNamePattern>EMPLOYEE</tableNamePattern>

 <columnNamePattern>EMPNO</columnNamePattern>

 </columnsInputData>

 </columnsInputParameter>

 </ns0:getColumns>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Example 6: executeQuery

The following example query fetches all rows from table employee and specifies

several parameters:

<?xml version="1.0" encoding="UTF-8"?>

 <SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <SOAP-ENV:Body>

 <ns0:executeQuery

 xmlns:ns0="http://schemas.ibm.com/db2/dqs">

 <queryInputParameter>

 select * from employee

 </queryInputParameter>

 <extendedInputParameter>

 <properties>

 <loginInfo>

 <userid>userid</userid>

 <password>some_password</password>

 </loginInfo>

 <readOnly>true</readOnly>

 <isolationLevel>READ_UNCOMMITTED</isolationLevel>

 <escapeProcessing>true</escapeProcessing>

 <startAtRow>4</startAtRow>

Chapter 3. Dynamic database queries that use the Web services provider 89

<fetchSize>80</fetchSize>

 <maxFieldSize>20</maxFieldSize>

 <maxRows>100</maxRows>

 <queryTimeout>2000</queryTimeout>

 </properties>

 </extendedInputParameter>

 </ns0:executeQuery>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Example 7: executeUpdate

The following example shows a dynamic query services update statement:

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <SOAP-ENV:Body>

 <ns0:executeUpdate

 xmlns:ns0="http://schemas.ibm.com/db2/dqs">

 <queryInputParameter>

 update bo_events set OBJECTEVENTID=&’testestest&’

 </queryInputParameter>

 <extendedInputParameter>

 <properties/>

 </extendedInputParameter>

 </ns0:executeUpdate>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The following example shows the response document that is returned:

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope

 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Body>

 <ns1:executeUpdateResponse

 xmlns:ns1="http://schemas.ibm.com/db2/dqs">

 <updateOutputParameter xsi:type="xsd:int">

 1

 </updateOutputParameter>

 </ns1:executeUpdateResponse>

 </soapenv:Body>

</soapenv:Envelope>

Example 8: executeCall

The example request calls the multipleResultSets stored procedure:

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <SOAP-ENV:Body>

 <ns0:executeCall

 xmlns:ns0="http://schemas.ibm.com/db2/dqs">

 <callInputParameter>

 <callInputData>

 <spName>

 multipleResultSets

 </spName>

 <parameters>

90 Application Development Guide for Federated Systems

<parameter>

 <inParam>

 <kind>IN</kind>

 <type>string</type>

 <value>000130</value>

 </inParam>

 </parameter>

 <parameter>

 <inParam>

 <kind>INOUT</kind>

 <type>string</type>

 <value>000130</value>

 </inParam>

 </parameter>

 <parameter>

 <outParam>

 <kind>OUT</kind>

 <type>string</type>

 </outParam>

 </parameter>

 </parameters>

 </callInputData>

 </callInputParameter>

 <extendedInputParameter>

 <properties/>

 </extendedInputParameter>

 </ns0:executeCall>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The following example shows the sample output:

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope

 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Body>

 <ns1:executeCallResponse

 xmlns:ns1="http://schemas.ibm.com/db2/dqs">

 <callOutputParameter>

 <dqs:callOutputData

 xmlns:dqs="http://schemas.ibm.com/db2/dqs/types/soap">

 <dqs:outputResultSequences>

 <db2WebRowSet

 xmlns="http://schemas.ibm.com/db2/dqs/db2WebRowSet"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <metadata>

 <column-count>5</column-count>

 <column-definition>

 <column-index>1</column-index>

 <nullable>0</nullable>

 <column-name>DEPTNO</column-name>

 <column-precision>3</column-precision>

 <column-scale>0</column-scale>

 <column-type>CHAR</column-type>

 <column-type-name>CHAR</column-type-name>

 <xml-type>string</xml-type>

 </column-definition>

 ...

 <column-definition>

 <column-index>5</column-index>

 <nullable>1</nullable>

 <column-name>LOCATION</column-name>

 <column-precision>16</column-precision>

 <column-scale>0</column-scale>

 <column-type>CHAR</column-type>

Chapter 3. Dynamic database queries that use the Web services provider 91

<column-type-name>CHAR</column-type-name>

 <xml-type>string</xml-type>

 </column-definition>

</metadata>

<data>

 <row>

 <column>A00</column>

 <column>

 SPIFFY COMPUTER SERVICE DIV.

 </column>

 <column>000010</column>

 <column>A00</column>

 <column xsi:nil="true"/>

 </row>

...

 <row>

 ...

 </row>

</data>

</db2WebRowSet>

</dqs:outputResultSequences>

 <dqs:outputParameterSequences>

 <dqs:callOutputParam>

 <position>2</position>

 <type>string</type>

 <value>xxxxxx</value>

 </dqs:callOutputParam>

 <dqs:callOutputParam>

 <position>3</position>

 <type>string</type>

 <value>This is the value of name3</value>

 </dqs:callOutputParam>

 </dqs:outputParameterSequences>

 </dqs:callOutputData>

 </callOutputParameter>

 </ns1:executeCallResponse>

 </soapenv:Body>

</soapenv:Envelope>

Example 9: execute

The following example creates a table with one column:

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <SOAP-ENV:Body>

 <ns0:execute

 xmlns:ns0="http://schemas.ibm.com/db2/dqs">

 <queryInputParameter>

 create table temptable(in varchar(500))

 </queryInputParameter>

 <extendedInputParameter>

 <properties/>

 </extendedInputParameter>

 </ns0:execute>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The following is the output from the execute operation:

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope

 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

92 Application Development Guide for Federated Systems

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Body>

 <ns1:executeResponse

 xmlns:ns1="http://schemas.ibm.com/db2/dqs">

 <executeOutputParameter>

 <dqs:executeOutputData

 xmlns:dqs="http://schemas.ibm.com/db2/dqs/types/soap">

 <resultsPresent>false</resultsPresent>

 <dqs:outputResultSequences>

 </dqs:outputResultSequences>

 </dqs:executeOutputData>

 </executeOutputParameter>

 </ns1:executeResponse>

 </soapenv:Body>

</soapenv:Envelope>

Dynamic query service operations in the Web services provider

This topic describes the dynamic query operations that are supported in the DB2

Web services provider.

The following tables describe the dynamic query operations that are supported in

the DB2 Web services provider.

 Table 3. Operations for metadata retrieval

Web service operation Description

getTables

tablesInputParameter

input; type = tablesInputData (see Table 7 on

page 96)

tablesOutputParameter

output; type = “db2WebRowSet” on page 98

Retrieves a description of the tables

in the specified catalog and schema,

such as the name of the catalog, the

name of the schema, and the name

of the table. If you use schema as an

input parameter, the Java database

connectivity might require case

sensitivity for schema.

getColumns

columnsInputParameter

input; type = columnsInputData (see Table 8

on page 97)

columnsOutputParameter

output; type = “db2WebRowSet” on page 98

Retrieves a description of the

columns in the specified catalog,

schema, and table. If you use

schema as an input parameter, the

Java database connectivity might

require case sensitivity for schema.

 Table 4. Operations to run queries and stored procedures

Operations Description

executeQuery

queryInputParameter

required input; type = string

extendedInputParameter

required input; type = properties (see Table 5 on

page 94)

queryOutputParameter

output; type = “db2WebRowSet” on page 98

Issues a single SQL SELECT

statement on the database

server and returns a single

result set.

Chapter 3. Dynamic database queries that use the Web services provider 93

Table 4. Operations to run queries and stored procedures (continued)

Operations Description

executeUpdate

queryInputParameter

required input; type = string

extendedInputParameter

required input; type = properties (see Table 5)

updateOutputParameter

output; type = int

Issues a single INSERT,

UPDATE, DELETE statement

on the database server and

returns a completion code.

executeCall

callInputParameter

input; type = callInputData

extendedInputParameter

input; type = properties (see Table 5)

callOutputParameter

output; type = callOutputData

Calls a single stored

procedure on the database

server and returns a set of

output parameters and a

sequence of result sets.

execute

queryInputParameter

required input; type = string

extendedInputParameter

required input; type = properties (see Table 5)

executeOutputParameter

output; type = executeOutputData

Issues a single SQL statement

on the database server and

returns a completion code

and a sequence of result sets.

You can use the optional parameters that are listed in Table 5 with the operations

that are listed in Table 4 on page 93.

 Table 5. Input data types for the extended parameters

Properties type Description

loginInfo

v userid

v password

The loginInfo includes the user ID that is passed to the

database for access control. It also includes the password

that is associated with the user ID that is passed to the

database for access control. These properties have a type of

string. If you specify a user ID, then you must specify a

password.

readOnly Allows the Web application to specify that it will use the

database for read-only purposes. This is a binary type and

can be either true or false.

escapeProcessing Allows the Web application to control escape processing on

the query string. If escape scanning is enabled (true), the

driver performs escape substitution before it sends the SQL

to the database. This is a binary type and can be either true

or false. The default value is true.

fetchSize Specifies the number of rows to be fetched back to the Web

application on any given fetch operation. This is type

integer. The default value is 0.

maxFieldSize Sets the limit for the maximum number of bytes in a

column to the specified number of bytes. The value is the

maximum number of bytes that can be returned for any

column value. The is type integer.

94 Application Development Guide for Federated Systems

Table 5. Input data types for the extended parameters (continued)

Properties type Description

maxRows Specifies the maximum number of rows to fetch back to the

Web application. This is type integer. If the maxRows

parameter is not specified, then a maximum of 1000 rows

can be returned.

startAtRow Allows the Web application to skip a specified number of

rows in the result set. This is type integer.

queryTimeout Allows the Web application to specify a timeout value for

the query. Sets the number of seconds that the driver waits

for a statement object to run to the given number of

seconds. If the limit is exceeded, an exception occurs. A

value of 0 seconds indicates that the driver can wait an

unlimited number of seconds.

isolationLevel Allows the Web application to control the isolation level of

the query.

v READ_UNCOMMITTED

v READ_COMMITTED

v REPEATABLE_READ

v SERIALIZABLE

v NONE

 Table 6. Input data types for the callInputParameter

callInputData type Description

spName

type: string

The name of the stored procedure to invoke.

This parameter is mandatory.

schema type: string The schema of the stored procedure. This

parameter is optional. If the parameter is not

supplied, the value is the current schema.

Chapter 3. Dynamic database queries that use the Web services provider 95

Table 6. Input data types for the callInputParameter (continued)

callInputData type Description

parameters

type: sequence of parameters, each

one consisting of either an inParam

or an outParam

inParam

type defined as:

v kind: either ’IN’ or

’INOUT’

v type: the type of the

parameter (such as int,

or string)

v value: the value of the

parameter

outParam

type defined as:

v kind: either ’IN’ or

’INOUT’

v type: the type of the

parameter

Stored procedures can have three kinds of

parameters: IN, OUT, and INOUT. This

parameter type is an extensible type. It allows

any number of any combination of the

inParam and outParam types. The Web

application must know if the stored

procedure that it plans to invoke needs any

parameters. If it needs parameters, it needs to

know how many parameters, and their type.

If the stored procedure takes one of the

unsupported data types as a stored procedure

parameter, then this stored procedure cannot

be executed through WORF.

WORF accepts several XML types for the

stored procedure parameters. The parameters

correspond to the built-in SQL data types.

Table 2 on page 72 describes the supported

types.

An input parameter can be set to NULL by

using one of the following values:

absent The <value/> tag for the input

parameter is not provided.

nil = true

The tag is marked with the attribute

nil, which is set to true, such as

<value xsi:nil=″true″/>

The order of the input parameter must be the

same as the order expected by the stored

procedure.

 Table 7. Input data types for the tablesInputData type

tablesInputData type Description

catalogPattern

type = ″string″

schemaPattern

type = ″string″

tableNamePattern

type = ″string″

Each of the pattern values is optional. If

the value is not specified, the value

defaults to the blank value. The

description and behavior of each is

specified in JDBC. Use the getTables Web

service operation to return the list of tables

that are satisfy the catalogPattern,

schemaPattern, and tableNamePattern that

are specified.

Example (note that such things as the namespace definitions are not shown here for

simplicity):

<tablesInputData>

 <catalogPattern></catalogPattern>

 <schemaPattern>userSchema

 </schemaPattern>

 <tableNamePattern>EMPLOYEE

 </tableNamePattern>

</tablesInputData>

96 Application Development Guide for Federated Systems

Table 8. Input data types for columnsInputData types

columnsInputData type Description

catalogPattern

type = ″string″

schemaPattern

type = ″string″

tableNamePattern

type = ″string″

columnNamePattern

type = ″string″

Each of the pattern values is optional. If

the value is not specified, the value

defaults to the blank value. The

description and behavior of each is

specified in JDBC. Use the getColumns

Web service operation to receive a list of

columns that satisfy the catalog string

pattern, schemaPattern, table name, and

columnNamePattern that is specified.

Example (note that such things as the namespace definitions are not shown here for

simplicity):

<columnsInputData>

 <catalogPattern></catalogPattern>

 <schemaPattern>userSchema

 </schemaPattern>

 <tableNamePattern>EMPLOYEE

 </tableNamePattern >

 <columnNamePattern>LASTNAME

 </columnNamePattern>

</columnsInputData>

 Table 9. Output data types for the callOutputData types

callOutputData type

outputResultSequences

contains a sequence of all result sets returned by the stored procedure as type

db2WebRowSet

outputParameterSequences:

contains a sequence of callOutputParam (parameters that were returned from the

stored procedure that can be either kind=INOUT or kind=OUT)

callOutputParam

returned Parameter: contains

v <position>

type: int - the position of the parameter in the stored procedure parameter list

v <type>

type: string - the XML data type (see callInputData for type information)

v <value>

type: any - the value of the parameter

If an output parameter is NULL the absent method is used.

The result contains

<value xsi:nil="true"/>

Chapter 3. Dynamic database queries that use the Web services provider 97

Table 9. Output data types for the callOutputData types (continued)

callOutputData type

Example (note that such things as the namespace definitions are not shown here for

simplicity):

<callOutputParameter>

 <dqs:callOutputData

 xmlns:dqs="http://schemas.ibm.com/db2/dqs/types/soap">

 <dqs:outputResultSequences>

 <db2WebRowSet

 xmlns="http://schemas.ibm.com/db2/dqs/db2WebRowSet"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <metadata>

 </db2WebRowSet>

 </dqs:outputResultSequences>

 <dqs:outputParameterSequences>

 <dqs:callOutputParam>

 <position>1</position>

 <type>short</type>

 <value>123</value>

 </dqs:callOutputParam>

 <dqs:callOutputParam>

 <position>2</position>

 <type>int</type>

 <value xsi:nil="true" />

 </dqs:callOutputParam>

 </dqs:outputParameterSequences>

 </dqs:callOutputData>

</callOutputParameter>

 Table 10. Output data types for the executeOutputData types

executeOutputData type Description

resultsPresent

type = ″boolean″

outputResultSequences

0 or more occurrences of

db2WebRowSet

If the execute Web service operation is

invoked with a query string that returns

result sets, the boolean indicates that this,

and outputResultSequences will each

contain one of those result sets.

Example (note that such things as the namespace definitions are not shown here for

simplicity):

<executeOutputParameter>

 <dqs:executeOutputData

 xmlns:dqs="http://schemas.ibm.com/db2/dqs/types/soap">

 <resultsPresent>true</resultsPresent>

 <dqs:outputResultSequences>

 <db2WebRowSet

 xmlns="http://schemas.ibm.com/db2/dqs/db2WebRowSet"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <metadata>

 </db2WebRowSet>

 </dqs:outputResultSequences>

 </dqs:executeOutputData>

</executeOutputParameter>

db2WebRowSet

The dynamic query service type, db2WebRowSet, describes a generic way for

generating an XML document from an SQL result set.

98 Application Development Guide for Federated Systems

The schema document, db2WebRowSet.xsd does not contain any metadata

information about a particular result set. It contains generic metadata information

about result set metadata. The actual result set metadata and the result set data is

in the XML instance document. An instance document contains a metadata section

and a data section.

Metadata section

The metadata section contains metadata information about all of the columns that

are in the result. The first element is a column count element. It contains the

number of columns in the result set. Then there is a column definition element for

every column. The column definition contains the following metadata information:

 Table 11. Column definition metadata

Element name Description

<column-index> The position of the column in the result set, starting

with 1.

<nullable> If the column can be NULL, then the value is 1. If the

column cannot be NULL, then the value is 0.

<column-name> The name of the column.

<column-precision> The description of this element depends on the SQL

data type. For example, if the SQL data type is a

character, then the column-precision is length. If the

SQL data type is a decimal, then the column- precision

is precision.

<column-scale> The column-scale is a decimal data type.

<column-type> The column-type corresponds to the Java database

connectivity type, such as BINARY, VARBINARY,

CHAR, and VARCHAR.

<column-type-name> The DB2 data type name, such as CHAR FOR BIT

DATA, VARCHAR FOR BIT DATA, CHAR, and

VARCHAR.

<xml-type> The XML data type, such as base64binary, int, string,

and dateTime.

Data section

The data section contains the actual data. Each row is mapped to a row element. A

row element contains as many column elements as there are columns in the result

set, and ordered by the column index. The row element contains the actual data as

an XML data type.

 Table 12. Data type mapping conventions

DB2 data type

<column-type-name>

JDBC data type

<column-type>

XML data type <xml-type>

BLOB BLOB base64Binary

CLOB CLOB string

LONGVARCHAR LONGVARCHAR string

VARCHAR VARCHAR string

CHAR CHAR string

CHAR FOR BIT DATA BINARY base64Binary

Chapter 3. Dynamic database queries that use the Web services provider 99

Table 12. Data type mapping conventions (continued)

DB2 data type

<column-type-name>

JDBC data type

<column-type>

XML data type <xml-type>

VARCHAR FOR BIT DATA VARBINARY base64Binary

LONGVARCHAR FOR BIT

DATA

LONGVARBINARY base64Binary

DATE DATE date

TIME TIME time

TIMESTAMP TIMESTAMP dateTime

- BOOLEAN boolean

- BIT boolean

TINYINT TINYINT int

SMALLINT SMALLINT int

INTEGER INTEGER int

BIGINT BIGINT int

DOUBLE DOUBLE double

FLOAT FLOAT double

REAL REAL float

DECIMAL DECIMAL decimal

NUMERIC NUMERIC decimal

- ARRAY anyType

DISTINCT DISTINCT string

- JAVA_OBJECT string

- NULL string

- OTHER string

- STRUCT string

- REF string

 other number of the type string

The following is the db2WebRowSet.xsd file. The default location of this file is the

<contextRoot> directory.

100 Application Development Guide for Federated Systems

<?xml version="1.0" encoding="UTF-8"?>

 <xs:schema targetNamespace="http://schemas.ibm.com/db2/dqs/db2WebRowSet"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:db2wrs="http://schemas.ibm.com/db2/dqs/db2WebRowSet"

 elementFormDefault="qualified">

 <xs:element name="db2WebRowSet">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="db2wrs:metadata"/>

 <xs:element name="data">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="row"

 minOccurs="0"

 maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="db2wrs:column"

 minOccurs="0"

 maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

<xs:element name="column"

 type="xs:anyType"

 nillable="true"/>

 <xs:element name="metadata">

 <xs:complexType>

 <xs:sequence>

 <xs:element

 name="column-count"

 type="xs:string" />

 <xs:choice>

 <xs:element name="column-definition"

 minOccurs="0"

 maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="column-index"

 type="xs:string" />

 <xs:element name="nullable"

 type="xs:string" />

 <xs:element name="column-name"

 type="xs:string" />

 <xs:element name="column-precision"

 type="xs:string" />

 <xs:element name="column-scale"

 type="xs:string" />

 <xs:element name="column-type"

 type="xs:string" />

 <xs:element name="column-type-name"

 type="xs:string" />

 <xs:element name="xml-type"

 type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:choice>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

Figure 34. db2WebRowSet.xsd

Chapter 3. Dynamic database queries that use the Web services provider 101

102 Application Development Guide for Federated Systems

Chapter 4. Document type definition repository table

When you enable a database for XML operations, the DB2 XML Extender creates a

document type definition (DTD) repository table named DTD_REF. The schema for

the DTD_REF table is DB2XML.

Validating the DTD

Each DTD in the DTD_REF table has a unique identifier, which is named in the

DTDID. The DTDID can be a string identifier or it can be the path that specifies

the location of the DTD on the local system. The DTDID must match the value that

is specified in the DAD file for the <DTDID> element.

Use a DTD to validate the XML data in an XML column or an XML collection.

Insert a DTD that you want to validate into the DTD_REF table by issuing the

following statement from the command line:

INSERT INTO db2xml.dtd_ref VALUES

 (’resume.dtd’,db2xml.XMLClobFromFile

 (’%PATH_DEMO%\resume.dtd’),0,

 ’user1’,’user1’,’user1’)

The INSERT statement uses the following values:

 db2xml.dtd_ref: the DB2 XML Extender table that stores DTDs.

 resume.dtd: a DTD that is validated.

 XMLClobFromFile:

Verifying the DTD registration

Verify that the DTD is registered correctly by issuing the following statement:

SELECT dtdid, content FROM db2xml.dtd_ref;

The value of content in this statement is the content of the DTD.

DTD definitions for XML Extender

The DB2 XML Extender provides sample DTD definitions for various platforms.

Ensure that the database administrator has set up any databases or subsystems

required for the application, and enables them for use by DB2 XML Extender (if

you use XML Extender). The following table lists the default locations that the

XML Extender samples reference.

 Table 13. XML Extender samples reference the following document type definitions (DTDs)

Platform Default location of DTDs

DB2 UDB Version 7.2

FixPak 7 or later

Windows

c:\dxx\samples\dtd\

 getstart.dtd

c:\dxx\dtd\dad.dtd

© Copyright IBM Corp. 2005, 2007 103

Table 13. XML Extender samples reference the following document type definitions

(DTDs) (continued)

Platform Default location of DTDs

DB2 UDB Version 8

Windows

c:\<DB2 installed

 location>\samples\

 db2xml\dtd\getstart.dtd

c:\<DB2 installed

 location>\samples\

 db2xml\dtd\dad.dtd

DB2 UDB Version 8

on Solaris Operating

Environment

/opt/IBMdb2/V8.1/samples/

 db2xml/dtd/dad.dtd

DB2 UDB Version 8

on AIX

/usr/opt/db2_08_01/

 samples/db2xml/dtd/dad.dtd

DB2 UDB Version 8

on Linux

/usr/IBMdb2/V8.1/samples/

 db2xml/dtd/dad.dtd

DB2 UDB Version 7

on OS/390 and z/OS

or DB2 UDB Version

8 on OS/390 and

z/OS

/u/USER/dxx/dtd/dad.dtd

The following is a list of some of the files that reference dad.dtd:

 department.dad

 department2.dad

 departmentStd.dad

 order.dad

 order-public.dad

 getstart.xml

 order-10.xml

 sales_db.nst

XML collection operations

You can generate or store XML documents with the <retrieveXML> or <storeXML>

operations. These operations call XML Extender stored procedures and require a

DAD file or an XML collection reference.

The retrieveXML or storeXML stored procedures generate or store XML documents

by using the mapping in a DAD file, or by referring to an enabled XML collection.

See DB2 XML Extender Administration and Programming to learn how to create a

DAD file.

The following example shows a more complex DADX file that generates an XML

document from a DAD file. It references a stored procedure by using the

<RetrieveXML> element. The <DAD_ref> element specifies the name of a DAD

file.

104 Application Development Guide for Federated Systems

The Web service generated from this DADX file calls the dxxGenXML stored

procedure and generates XML documents. The stored procedure refers to the

getstart_xcollection.dad file to determine which tables to use when generating

the XML documents, and the XML document structure.

Converting a document type definition to an XML schema

Web services description language uses XML schemas (XSD files) to define

document structure. XML Extender uses document type definition files (DTDs) to

define document structure. Web services object runtime framework (WORF)

automatically creates an XML Schema (XSD) file.

Purpose

To use your XML Extender DTD files with WSDL, you must convert the DTD files

to XML schemas. You must add an entry to the namespace table (NST file) to

define the namespace associated with a DTD. This also enables conversion of the

DTD to XSD. Request an XSD file by using the following uniform resource locator

(URL) syntax:

http://host/path/dtd_file.dtd/XSD

Example request for an XSD file

In this example, the order.dtd file must be in WEB-INF\groups\dxx_sample.

 http://host_name:port/services/sample/order.dtd/XSD

DTD_REF table

WORF and the XML Extender locate DTDs through their document type definition

identifier (DTDID). The DTDID is either a file name or the key value in the

DTD_REF table of your database. XML Extender creates the DTD_REF table when

you enable your database. The best practice is to store DTDs in the DTD_REF table

<?xml version="1.0"?>

<DADX xmlns="http://schemas.ibm.com/db2/dxx/dadx"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xhtml="http://www.w3.org/1999/xhtml">

 <documentation>

 Provides queries for part order information at myco.com.

 See

 <xhtml:a href="../documentation/PartOrders.html"

 target="_top">PartOrders.html

 </xhtml:a>

 for more information.

 </documentation>

 <operation name="findAll">

 <documentation>

 Returns all the orders with their complete details.

 </documentation>

 <retrieveXML>

 <DAD_ref>getstart_xcollection.dad</DAD_ref>

 <no_override/>

 </retrieveXML>

 </operation>

</DADX>

Figure 35. DADX file that generates an XML document

Chapter 4. Document type definition repository table 105

since file locations might change when you move your Web application to another

machine.

How to insert DTDs in the DTD_REF table

The following extract from the Windows 2000 setup-xcollection.cmd file in the

SALES_DB example shows how to insert DTDs into the DTD_REF table:

db2 "connect to SALES_DB"

rem Insert DTDs

db2 "insert into db2xml.dtd_ref values(’getstart.dtd’,

 db2xml.XMLClobFromFile(’%CD%\getstart.dtd’),

 0, ’user1’, ’user1’, ’user1’)"

db2 "insert into db2xml.dtd_ref

 values(’order.dtd’, db2xml.XMLClobFromFile(’%CD%\order.dtd’),

 0, ’user1’, ’user1’, ’user1’)"

106 Application Development Guide for Federated Systems

Chapter 5. Testing Web services applications

Verifying and testing Web services provider (WORF)

You can verify the Web service by using the DADX test page that is available if

you deploy the WORF examples that are shipped with the federated server. You

can copy the Java Server Pages from the WORF directory in the

websphere-services.war file or the axis-services.war file to test some of the WORF

functionality in your application.

You are now ready to create a Web service that accesses the SAMPLE database that

comes with DB2. This scenario assumes that you installed the WORF samples as a

Web application named services. The scenario also assumes that you configured

services on your application server.

Testing Web services applications – a scenario

WORF supports the creation of Web services by using the document access

definition extension (DADX) file. The DADX file contains necessary information to

create a Web service and can reference the DAD file.

This scenario uses a simple DADX file, called HelloSample.dadx:

 For the OS/390® and z/OS™ platforms, you might need to modify the name of the

table to correspond with the sample DEPARTMENT table that is installed. This

table has a default name of DSN8710.DEPT.

To deploy the Web service defined in the DADX file, copy it to the application

server in the directory defined by the db2sample group in the dxx_sample

directory.

When you add a new DADX file, WORF redeploys the Web service. You must

restart the Web application to enable the new DADX file.

HelloSample.dadx defines a Web service with a single operation named

listDepartment, which lists the contents of the DEPARTMENT table. The child tag

<query> specifies the type of operation.

Testing the Web service

You can test your Web service by using the samples provided by the Web services

provider.

<?xml version="1.0" encoding="UTF-8"?>

 <DADX xmlns="http://schemas.ibm.com/db2/dxx/dadx">

 <operation name="listDepartments">

 <query>

 <SQL_query>SELECT * FROM DEPARTMENT</SQL_query>

 </query>

 </operation>

 </DADX>

Figure 36. Simple DADX file: HelloSample.dadx

© Copyright IBM Corp. 2005, 2007 107

Procedure

To test your Web service:

1. Install the WORF samples in the directory \WEB-INF\classes\groups\
dxx_sample.

2. Deploy the sample application in a server such as WebSphere Application

Server (WAS).

3. Open a browser window and type the following uniform resource locator

(URL) to begin the test:

http://<your WebAppServer>/services/db2sample/ivt.dadx/TEST

Remember that the identifier <your WebAppServer> depends on your Web server

configuration. When you type the address, you see the following automatically

generated documentation and test page

4. Test the listDepartments operation.

a. Click the listDepartments link in the Methods pane.

b. Click the Invoke push button in the Inputs pane. You can view the XML

result of the operation in the Result pane:

Figure 37. The WORF test page

108 Application Development Guide for Federated Systems

Web services samples – PartOrders.dadx

The Web service example in this topic uses a database sample called dxx_sales_db.

This is the sample database used in the documentation and samples shipped with

DB2 XML Extender and with WORF.

The dxx_sales_db database stores information about part orders.

Suppose that you must provide a Web Service that retrieves orders that are based

on the following conditions:

v Find all the orders

v Find all the orders for parts of a specified color

v Find all the orders whose price is greater than or equal to a minimum price

You create a DADX file named PartOrders.dadx that contains the following

operations:

v findAll

v findByColor

v findByMinPrice

You create a Web Service by deploying the PartOrders.dadx file to the services

Web application. This is configured with the dxx_sales_db instance of WORF. The

deployment location of this file is WEB-INF/classes/groups/dxx_sales_db/
PartOrders.dadx.

The Web Service supports access by the following protocols:

v Hypertext Transfer Protocol (HTTP) GET

v HTTP POST

v HTTP SOAP

Figure 38. Result of the query

Chapter 5. Testing Web services applications 109

HTTP GET and POST are useful for simple access from Web browsers. In this case,

the request uses the content type of application/x-www-form-urlencoded.

For example, suppose that you deploy the Web services on the host

www.mycompany.com. The following URLs would invoke the Web services using

HTTP GET:

v http://www.mycompany.com /services/sales/PartOrders.dadx /findAll

v http://www.mycompany.com /services/sales/PartOrders.dadx

/findByColor?color=red

v http://www.mycompany.com /services/sales/PartOrders.dadx

/findByMinPrice?minprice=20000

This syntax encodes the method in the uniform resource locator (URL) as the extra

path information and the parameters as the query string. The responses to these

requests have a content type of text/xml. For HTTP POST, you send the query

string in the body of the request instead of the URL, but its content type is still

application/x-www-form-urlencoded. Here is an example of an HTTP POST

request when captured with a Transmission Control Protocol (TCP) trace utility.

The example shows both the HTTP header and body:

POST /services/sales/PartOrders.dadx/findByColor

HTTP/1.1

User-Agent: Java1.3.0

Host: localhost:9081

Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2

Connection: keep-alive

Content-type: application/x-www-form-urlencoded

Content-length: 12

color=red+++

A Web Service defined by a DADX file is self-describing. It dynamically generates

a documentation and test page, WSDL documents, and XML Schema. The

following HTTP GET URL requests the documentation and test page:

http://www.mycompany.com/services

/sales/PartOrders.dadx/TEST

The following HTTP GET URL requests the WSDL description of the service:

http://www.mycompany.com/services

/sales/PartOrders.dadx/WSDL

For HTTP SOAP, you invoke the services by sending SOAP envelopes using POST

to the URL:

http://www.mycompany.com/services

/sales/PartOrders.dadx/SOAP

But with a request content type of text/xml instead of application/x-www-form-
urlencoded. The following example is a SOAP request that is traced with a TCP

monitor. It is like the one built into WebSphere Studio. This example includes the

HTTP header information and the HTTP body:

POST /services/sales/PartOrders.dadx/SOAP

HTTP/1.0

Host: localhost

Content-Type: text/xml; charset=utf-8

Content-Length: 547

SOAPAction: "http://tempuri.org/sales/PartOrders.dadx"

<?xml version=’1.0’ encoding=’UTF-8’?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

110 Application Development Guide for Federated Systems

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<SOAP-ENV:Body>

<ns1:findByColor xmlns:ns1="http://tempuri.org/sales/PartOrders.dadx" SOAP-

ENV:encodingStyle="http://xml.apache.org/xml-soap/literalxml">

<color xsi:type="xsd:string" SOAP-

ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">red </color>

</ns1:findByColor>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

.

PartOrder DADX file

PartOrders.dadx implements all three of its operations using the <retrieveXML>

operator which uses the XML collection access method. In general, each operation

can use a different operator and access method.

Chapter 5. Testing Web services applications 111

<?xml version="1.0"?>

 <DADX xmlns="http://schemas.ibm.com/db2/dxx/dadx"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xhtml="http://www.w3.org/1999/xhtml">

 <documentation>

 Provides queries for part order information at myco.com.

 See <xhtml:a href="../documentation/PartOrders.html" target="_top">

 PartOrders.html</xhtml:a> for more information.

 </documentation>

 <operation name="findAll">

 <documentation>

 Returns all the orders with their complete details.

 </documentation>

 <retrieveXML>

 <DAD_ref>getstart_xcollection.dad</DAD_ref>

 <SQL_override>

 select o.order_key, customer_name, customer_email,

 p.part_key, color, quantity, price, tax, ship_id, date, mode

 from order_tab o, part_tab p,

 table(select substr(char(timestamp(generate_unique())),16)

 as ship_id, date, mode, part_key from ship_tab) s

 where p.order_key = o.order_key and s.part_key = p.part_key

 order by order_key, part_key, ship_id

 </SQL_override>

 </retrieveXML>

 </operation>

<operation name="findByColor">

 <documentation>

Returns all the orders that include one or

 more parts that have the specified

 color, and only shows the details for those parts.

</documentation>

 <retrieveXML>

 <DAD_ref>getstart_xcollection.dad</DAD_ref>

 <SQL_override>

 select o.order_key, customer_name, customer_email,

 p.part_key, color, quantity, price, tax, ship_id, date, mode

 from order_tab o, part_tab p,

 table(select substr(char(timestamp(generate_unique())),16)

 as ship_id, date, mode, part_key from ship_tab) s

 where p.order_key = o.order_key and s.part_key = p.part_key

 and color = :color

 order by order_key, part_key, ship_id

 </SQL_override>

 <parameter name="color" type="xsd:string"/>

 </retrieveXML>

 </operation>

 <operation name="findByMinPrice">

 <:documentation>

Returns all the orders that include one or more

 parts that have a price greater than

 or equal to the specified minimum price,

and only shows the details for

 those parts.

</documentation >

 <retrieveXML>

 <DAD_ref>

 getstart_xcollection.dad

 </DAD_ref>

 <SQL_override>

 select o.order_key, customer_name, customer_email,

 p.part_key, color, quantity, price, tax, ship_id, date, mode

 from order_tab o, part_tab p,

 table(select substr(char(timestamp(generate_unique())),16)

 as ship_id, date, mode, part_key from ship_tab) s

 where p.order_key = o.order_key and s.part_key = p.part_key

 and p.price >= :minprice

 order by order_key, part_key, ship_id

112 Application Development Guide for Federated Systems

Installing a Web application that is used with the IBM Web

Service SOAP provider engine

When you install an application with the Apache Axis SOAP engine, selecting the

defaults from the WebSphere Application Server is all that you need to do. When

you install with the IBM Web Service SOAP provider engine, you must prepare the

WebSphere Application Server environment.

About this task

You can use Web archives files (WAR) to package, distribute, and install Web

applications.

You generally package the files that make up your Web application in a single

WAR file for deployment. A WAR file might contain the web.xml server

configuration files, the group.properties configuration files, and the DAD and

DADX files. The WORF samples that you deployed contain two examples of WAR

files: websphere-services.war and axis-services.war.

Procedure

To install a Web application that uses the IBM Web Service SOAP provider engine

by installing websphere-services.war as an enterprise application:

1. Install the Web application with the following options on the WebSphere

Application Server administration console:

v Generate Default Bindings

v Use Binary Configuration

v Enable Class Reloading
2. Start the Web application.

3. Access the Web application by using the context root name from your browser

with either the LIST or the WSDL function for each DADX file so that a

deploying descriptor is generated.

your-Web-server:9080/context_root_name/LIST

4. Re-start the Web application from the administration console of the WebSphere

Application Server.

A list page at the group level looks like this:

Chapter 5. Testing Web services applications 113

Java 2 Enterprise Edition applications

You can use *.war files, *.jar files, and *.ear files in Java 2 Enterprise Edition

applications.

When you deploy a Java™ 2 Enterprise Edition (J2EE) application, the following

components must be built for an e-business application:

Web archive (WAR)

The Web-related components (HTML, JavaScript™, JavaServer Pages)

Figure 40. Web services list page

114 Application Development Guide for Federated Systems

Java archive (JAR)

The Java classes that make up the business logic components

Enterprise archive (EAR)

The Java archive files plus Web archive files that make up an enterprise

solution

The minimum deployable unit in WebSphere® Application Server 5.0 is a Web

archive file. If the application creates Enterprise JavaBeans™, then a Java archive

file and an Enterprise archive file are required.

Preparing and creating the Web archive file

You can use Web archive files to package, distribute, and install Web applications.

Procedure

To create a Web archive (WAR) file:

1. Create the basic directory structure for the WAR file such as:

WEB-INF\lib\worf-servlets.jar and WEB-INF\web.xml. These files are from the

WORF dxxworf.zip file. The WORF directory hierarchy is in the

websphere-services.war file or the axis-services.war file. You use these files

when you run the TEST page. The files in the worf subdirectory are not

necessary if you do not plan to use the built-in test facility of WORF. The

worf-servlets.jar file is in the lib subdirectory where WORF is installed. The

web.xml is the standard J2EE web.xml.

2. For each group:

a. Create your group subdirectory, for example WEB-INF\classes\groups\
myGroup, and include the group.properties and your DADX file in the

subdirectory.

b. Edit the WEB-INF\web.xml file to add the servlet and the servlet-mapping.

For example, add a servlet name called myGroup and a URL-mapping

called myURLPath.
3. Create the WAR file with either of the following methods:

Command line

Rational Web Developer for WebSphere

Software

jar -cvf minWORFwar.war WEB-INF worf Select File → Export → WAR file. Select the

project name that your Web application is in

and specify a file name.

4. Deploy the WAR file as described in the sample installations for WebSphere

Application Server or Apache Jakarta Tomcat, for example, with myContext as

the Web application context. For each new DADX file that you add to the

application, WORF redeploys the Web service. You must restart the Web

application to enable the additional DADX files. When you use the IBM Web

Service SOAP provider engine perform the following steps:

a. Install the Web application with the following WebSphere Application

Server options: default binding, binary configuration and class reloading.

a. Access the application with the Web services provider WSDL or LIST

function.

b. Restart the Web application.

5. Verify that you created the WAR file correctly by running the TEST page. For

example, the URL for your TEST might look similar to the following:

http://your WebAppServer/myContext/myURLPath/ivt.dadx/TEST

Chapter 5. Testing Web services applications 115

Note: The ivt.dadx file is a specific sample that is shipped. You might not have

this file in your new WAR file

Examples of empty web.xml and dds.xml files

An empty web.xml file looks like the example in Figure 41.

An empty dds.xml file looks like the example in Figure 42.

Web services provider tracing

After you deploy your Web service, you might need to get information about

run-time events and diagnostics from the Web service provider. To debug and

troubleshoot your Web services application, DB2® Web services uses the trace

facility of the Web application server on which your application runs. The trace

information that you receive from the Web application server includes messages

and event activity.

The DB2 Web services provider supports two tracing systems:

log4j Jakarta-log4j-1.2.8 and commons-logging-1.0.3 on Apache Jakarta Tomcat

4.0.6 and later

JRas The tracing and logging system that is used by WebSphere® Application

Server, Version 5 and later

With these tracing systems you can incorporate message logging and trace facilities

into your Java™ applications.

The output that is generated from a trace that you enable within your application

appears in the root directory of the Web application server that you use. Table 14

shows the location of the output log file:

 Table 14. Trace output location

Server Output log file location

WebSphere Application Server ${SERVER_LOG_ROOT}/trace.log

Apache Jakarta Tomcat <tomcat>/logs/worf_log4j.log

All trace messages and events are identified by the operation name of the Web

service, the name of the servlet, or the name of the DADX file.

DB2 Web services provider can trace the following types of events:

<?xml version="1.0" encoding="UTF-8"?>

<web-app>

</web-app>

Figure 41. Empty web.xml file

<?xml version=’1.0’?>

<dds>

</dds>

Figure 42. Empty dds.xml file

116 Application Development Guide for Federated Systems

Informational messages

Messages that indicate when a Web service request event or a Web service

response event completes successfully, such as when a DADX file is parsed

successfully.

Warning messages

Messages that indicate when a warning condition is detected during

processing of the Web service request or the Web service response, such as

a warning message from the XML parser for a DADX file.

Error messages

Messages that indicate when an error is detected during the processing of

the Web service request or the Web service response, such as when the

application produces an exception.

Trace events

Events that indicate when the application enters or exits a method, an

exception, a call stack, or value of a variable.

Enabling tracing for the DB2 Web services provider-Apache

Tomcat Version 4.0 or later Web application server

You can configure the Apache Tomcat server to trace your DB2 Web services.

Before you begin

You need authorization to modify the configuration of the server that you use.

Procedure

To enable tracing for the DB2 Web services provider:

1. Modify the default log4j tracing for the DB2 Web services provider.

2. View a log of your trace events at <installed Web server location>\AppServer\
logs\<local server name>.

3. Create a configuration file with the name log4j.configuration.

4. Modify the settings in the configuration file to display only certain types of

messages. For example: log4j.logger.com.ibm.etools.rt.webservice.*=INFO

5. Place the configuration file, log4j.configuration, in the WEB-INF/classes

directory of the Web application.

Example of log4j.configuration

log4j.rootCategory=INFO, console, rollingFile

log4j.logger.com.ibm.etools.rt.webservice.*=INFO

log4j.appender.console=org.apache.log4j.ConsoleAppender

log4j.appender.console.layout=org.apache.log4j.PatternLayout

log4j.appender.console.layout.ConversionPattern=%5p [%t] (%F:%L) - %m%n

log4j.appender.rollingFile=org.apache.log4j.RollingFileAppender");

log4j.appender.rollingFile.File=<servletContext>\..\..\logs\worf_log4j.log

log4j.appender.rollingFile.MaxFileSize=100KB

log4j.appender.rollingFile.layout=org.apache.log4j.TTCCLayout

log4j.appender.rollingFile.layout.layout.ConversionPattern=%p %t %c - %m%n

The following is a guide for message types in the log4j.configuration file.

 Table 15. Message settings for log4j configuration file

Message type Configuration setting

log4j warning messages or higher log4j.logger.com.ibm.etools.webservice.*

log4j informational messages log4j.logger.com.ibm.etools.webservice.*=INFO

Chapter 5. Testing Web services applications 117

Table 15. Message settings for log4j configuration file (continued)

Message type Configuration setting

log4j error messages log4j.logger.com.ibm.etools.webservice.*=ERROR

Enabling tracing for the DB2 Web services provider–WebSphere

application server

You can configure the WebSphere application server to trace the DB2 Web services

from the administrative console.

Before you begin

You need authorization to modify the configuration of the server that you use.

Procedure

To enable tracing for the DB2 Web services provider:

 1. Modify the default jRAS tracing for the DB2 Web services provider.

 2. View a log of your trace events at <installed Web server location>\
AppServer\logs\<local server name>.

 3. Start the WebSphere application server administrative console.

 4. In the Navigation tree, click Troubleshooting → Log and Trace to open the

Logging and Tracing window.

 5. In the Logging and Tracing window, click the server name and then select

Diagnostic Trace.

 6. In the Trace Specification field, type the trace string:

com.ibm.etools.webservice.*=all=enabled

 7. If the server is stopped, go to the Configuration page. If the server is running,

go to the Runtime page.

 8. Optional: From the Runtime page, select the Save trace check box to write

your changes to the server configuration. If the Save trace check box is

cleared, the changes that you make apply only for the life of the server

process that is currently running.

 9. Optional: From the Configuration page, select the Enable Trace check box.

10. Save your changes and restart the server.

118 Application Development Guide for Federated Systems

An example of enabling the trace when the server is not running.

Enabling tracing for the DB2 Web services provider-Rational

Web Developer

You can configure the WebSphere Studio to trace the DB2 Web services from the

administrative console.

Before you begin

You need authorization to modify the configuration of the server that you use.

Procedure

Figure 43. Enabling the Web services provider trace

Chapter 5. Testing Web services applications 119

To enable tracing for the DB2 Web services provider::

1. Modify the default jRAS tracing for the DB2 Web services provider.

2. View a log of your trace events at <installed Web server location>\AppServer\
logs\<local server name>.

3. Start the WebSphere Studio administrative console.

4. From the main menu, click Window → Show View → Server Configuration to

open the Server Configuration view.

5. On the Servers menu, double-click WebSphere v5.0 Test Environment to open

the server editor.

6. Go to the Trace page.

7. In the Trace Specification field, type the following trace string:

com.ibm.etools.webservice.*=all=enabled

8. Select the Enable Trace check box.

9. Save your changes and restart the server.

Publishing your Web services

Web service providers publish their Web services so that clients can access them

using SOAP over HTTP.

This publication method contrasts with Enterprise Java™ Bean (EJB) clients that

access beans by using remote method invocation (RMI) over Internet Inter-Orb

Protocol (IIOP). Web services process requests from Web clients by invoking the

appropriate business function and typically returning a response. The Web service

description language (WSDL) document describes the Web service. You store the

WSDL in a repository, such as a UDDI registry or on the server of the Web service

provider. Storing the Web service description in an appropriate repository offers

the potential for interested customers to discover its existence, potentially

generating new business for the Web service provider.

Administering and troubleshooting the Web services provider

Using connection pooling to improve performance

You can use IBM WebSphere Application Server to help create and maintain a pool

of database connections.

Before you begin

1. Create the JDBC provider if one does not exist that you want to use.

2. Create a data source.

About this task

Each time a resource attempts to access a database, it must connect to that

database. A database connection requires resources to create the connection,

maintain it, and then release it when it is no longer required. The database

resources required for a Web-based application can be high because Web users

connect and disconnect more frequently. These database connections can be shared

by applications on an application server to address the resource problems.

Installed applications use JDBC providers to access data from databases. By using

a pool of database connections, you can spread the connection overhead across

120 Application Development Guide for Federated Systems

several user requests, thereby conserving resources for future requests and

improving performance. You can configure a pool for each unique data source.

Procedure

To adjust some of the connection pooling parameters for a particular data source

within a JDBC provider from WebSphere Application Server, Version 5, perform

the following steps:

1. Configure the data source parameters.

2. Update the connection pooling information according to the guidelines in

WebSphere handbook. Figure 44 shows the specific information that you should

update.

3. Edit the group.properties file in the groups subdirectory and add the following

lines of text:

initialContextFactory=<your context factory>

datasourceJNDI=<your DataSource>

Figure 44. Connection pools

Chapter 5. Testing Web services applications 121

http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg246161.pdf

4. Restart the Web application if you have made any changes to the

group.properties file so they will take effect.

The following example shows part of a group.properties file with the connection

pool information:

initialContextFactory=com.ibm.websphere.naming.WsnInitialContextFactory

datasourceJNDI=jdbc/sampleDataSource

WebSphere Application Server provides a Java Naming service (JNDI) to facilitate

the connection to DB2. The pool is shared by all applications connecting to the

same data source.

Troubleshooting Web services

This topic describes some typical problems that might occur when you use WORF

on WebSphere Application Server 5.1 and the recommended solutions.

Table 16 describes problems that can occur when you use WORF on WebSphere

Application Server 5.1. The table provides recommended solutions.

 Table 16. Errors and solutions

Problem Solution

Error 500: Server caught

unhandled exception from

servlet [isd_demos]:

org.apache.soap.rpc.

SOAPContext: method

setClassLoader

(java\lang\ClassLoader;) not

found

SOAP 2.2 or later (soap.jar) is missing.

Clicking on the Invoke button

from the Web services test page

in Internet Explorer results in a

’The page cannot be found’

error.

To view a more helpful error message use Netscape to

debug the problem. Or, edit the Internet Explorer

environment by doing the following steps:

1. Open the Tools menu from the Internet Explorer

menu bar.

2. Select Internet Options from the menu to open the

Internet Options window.

3. Click on the Advanced tab.

4. Clear the check box next to Show friendly HTTP

error messages

Error 400: service

’http://tempuri.org

/***/***.dadx’ unknown

You have to generate a deployment descriptor from the

DADX file and restart your Web application before

invoking the service.

Error 400: Unable to get

DAD;unable to get Input Stream

for: xxxxxx

There is no access to the specified XML Extender DAD

file (for example, the DAD that is specified in the *.nst

file)

Error 400: database connection

error

v Database is not started.

v The database objects that are referenced in the DADX

file do not exist.

v The JDBC driver is not found.

Error 400: unable to get input

stream for /groups/xxx/
yyy.dadx

The DADX file is not in the group folder, or it is not

accessible.

122 Application Development Guide for Federated Systems

Table 16. Errors and solutions (continued)

Problem Solution

Error 404: File not found:

aaaa/abc.dadx

The servlet mapping ’aaaa’ does not exist in the web.xml

file.

blank page results If you are using a version of WebSphere Application

Server that is earlier than Version 5.0.2, you might be

missing jaas.jar. Open SystemErr.log in the server

directory to determine if other JAR files are missing.

To obtain information about runtime events and diagnostics from the Web service

provider to troubleshoot your Web service after it is deployed, you can use the

trace facility of the Web application server on which your application runs. The

trace information that you receive from the Web application server includes

messages and event activity. Even if the tracing is not enabled, errors are captured

in the application server error logs.

Security in DADX Web services

You can secure Web services by using the security mechanisms of your application

server. The mechanisms discussed here are authentication, encryption, and securing

the database user ID.

Authentication

You can secure the DADX Web service endpoints by enabling authentication. When

you enable authentication, you ensure that only those people who are

authenticated can call your Web service. Access control in Java™ 2 Enterprise

Edition (J2EE) is specified by the URL. Each DADX Web service uses URLs for

different parts of the Web service, such as the endpoint and during the generation

of the actual WSDL, and in the test page. For each URL that DADX uses, you can

specify which roles (and as part of that definition you can specify which users) are

allowed to access that URL. The process of setting authorizations for authenticated

users of Web services is similar to granting SELECT privileges on a DB2 table.

The following table shows examples of URLs and URL patterns that you can use to

protect Web services, specific operations, or services provided by WORF .

 Table 17. Examples of URLs and patterns

Description URL pattern

Enable access control for

all URLs of a DADX, the

test pages, and the WSDL

generation by using the

following URL:

http://hostname:port/myContext/myGroup/myDadx.dadx/*

Enable access control for

only the test page by

using the following URL

http://hostname:port/myContext/myGroup/myDadx.dadx/TEST

Enable access control for

all of the DADX Web

services in a group by

using the following URL

http://hostname:port/myContext/myGroup/*

You can define security constraints in the Application Server Toolkit or Application

Assembly tool of WebSphere® Application Server Version 5 or later. You can also

Chapter 5. Testing Web services applications 123

define security constraints in the Web perspective of WebSphere Studio Application

Developer Version 5 or later. The constraints that you define can include role

names, so that anyone with that particular role name can access the Web area.

The DADX Web services support the Web services security that is part of the IBM

Web Service SOAP provider.

Encryption

You can secure the DADX Web services by encrypting messages through HTTPS.

Encryption ensures that nobody can read the messages that are exchanged between

the Web service client and the Web service provider. See the documentation that is

part of your application server to determine how to enable HTTPS.

Database security

In WebSphere Application Server Version 5, you can specify the database user ID

on the application server for a JNDI data source. In the group.properties file, you

can refer to that JNDI data source so that the DB2 Web service provider uses the

user ID that you specify in WebSphere. Your database user password is encrypted

on the application server.

For more information on authentication, encryption and data source authentication,

see the information related to your particular application server. Also see the

following WebSphere documentation for specific information on security:

v IBM WebSphere Application Server, Version 5: Security

v IBM WebSphere V5.0 Security WebSphere Handbook Series

124 Application Development Guide for Federated Systems

Chapter 6. Web service consumer functions

The tools for the Web services consumer help you access Web services data by

using SQL. The tools convert existing Web services description language (WSDL)

interfaces into DB2 table or scalar functions.

You can invoke a set of user-defined functions (UDFs) that provide a client simple

object access protocol (SOAP) over Hypertext Transfer Protocol (HTTP) interface to

accessible Web services. You can call these functions directly from SQL statements.

You can construct the SOAP body according to the WSDL of a Web service. You

can also use the Web service User-Defined Function (UDF) tool in Rational

Application Developer to automatically generate specific UDFs. These UDFs can

invoke operations that are defined by a user-specified Web services description

language file. The generated UDFs are DB2 functions that do the following:

v Provide the parameters for the Web service request

v Invoke the SOAP client functions

v Map the result of the Web service invocation to the return types that are

specified by the user

Firewalls

On some networks, access to the internet must go through a firewall. The traffic

might be restricted to certain systems and certain ports that are allowed to send

network traffic. Some systems allow applications to tunnel through the firewall.

The SOAP UDFs support tunneling with SOCKS clients and HTTP proxies. To use

a SOCKS server to tunnel through the firewall, you must install SOCKS client

software on your system. To use HTTP proxies, you must set DB2 environment

variables. Set DB2SOAP_PROXY to include the host name of the system with the

HTTP proxy. Set DB2SOAP_PORT to the port of the HTTP proxy, such as 8080. In

both cases, the SOAP traffic goes through the system that tunnels through the

firewall.

Secure sockets layer (SSL) environment variables

The following environment variables for the SOAP UDFs and some non-relational

UDFs support encryption between endpoints:

DB2SOAP_SSL_KEYSTORE_FILE

Identifies the certificate storage file for SSL or transport layer security

(TLS) communications. The value must be a fully qualified path name that

is accessible by the DB2 agent or Fenced-Mode processes (FMP). The value

GSK_MS_CERTIFICATE_STORE designates the native Microsoft® certificate

storage.

DB2SOAP_SSL_KEYSTORE_PASSWORD

Specifies the password for access to the SSL certificate storage file.

DB2SOAP_SSL_CLIENT_CERTIFICATE_LABEL

Identifies the client certificate that is sent during an SSL authentication. If

this value is not specified, the current DB2 authorization ID is used to

locate the certificate.

© Copyright IBM Corp. 2005, 2007 125

DB2SOAP_SSL_VERIFY_SERVER_CERTIFICATE

Indicates whether the server certificate is verified during the SSL

authentication. The value is case-insensitive and can be one of the

following strings:

v Y

v YES

v T

v TRUE

v N

v NO

v F

v FALSE

The default value is NO.

Running the sample applications

You can test the sample federated applications with the following steps:

1. Start the database manager with the db2start command.

2. Create the sample database with the db2sampl command.

3. Establish a connection with the sample database.

4. Invoke the example files (in a Windows® environment, these example files are

in <DB2 installed path>\samples\soap) with the following command: db2 -vf

filename -t.

Installation of the Web services consumer user-defined functions

The db2enable_soap_udf command enables your database to use the SOAP

requester functions.

Before you begin

You should install the following software before running the SOAP UDFs:

v DB2

– Version 9 which includes Xerces parser and XML Extender
v Optional: Rational Application Developer for WebSphere Software Version 6,

which provides wizards for exposing a variety of resources as Web Services.

v You must also enable DB2 XML Extender with the dxxadm enable_db sample

command. See theDB2 XML Extender Administration and Programming for more

options on the DB2 XML Extender commands.

Restrictions

The Web services consumer user-defined functions (UDFs) are available on the

following platforms (all platforms are 32 bit):

v Windows 2000

v Linux

v AIX

v Solaris Operating Environment (with DB2 for Universal Database Version 8, Fix

Pack 2)

126 Application Development Guide for Federated Systems

Procedure

To enable, or install, and disable the Web service consumer:

1. Run the following command to register five user-defined functions:

db2enable_soap_udf -n dbName [-u uID] [-p password] [-force]

2. When you disable the Web service consumer, you drop the functions. Run the

following command:

db2disable_soap_udf -n dbName [-u uID] [-p password]

3. You can also create and delete the user-defined functions by using the DB2 CLP

(command line processor).

CREATE SCHEMA db2xml;

 CREATE FUNCTION db2xml.soaphttpv (

 endpoint_url VARCHAR(256),

 soap_action VARCHAR(256),

 soap_body VARCHAR(3072))

 RETURNS VARCHAR(3072)

 LANGUAGE C PARAMETER STYLE DB2SQL

 SPECIFIC soaphttpvivo EXTERNAL NAME ’db2soapudf!soaphttpvivo’

 SCRATCHPAD FINAL CALL FENCED

 NOT DETERMINISTIC CALLED ON NULL INPUT

 NO SQL EXTERNAL ACTION DBINFO;

 CREATE FUNCTION db2xml.soaphttpv (

 endpoint_url VARCHAR(256),

 soapaction VARCHAR(256),

 input_message CLOB(1M))

 RETURNS VARCHAR(3072)

 LANGUAGE C PARAMETER STYLE DB2SQL

 SPECIFIC soaphttpcivo EXTERNAL NAME ’db2soapudf!soaphttpcivo’

 SCRATCHPAD FINAL CALL FENCED

 NOT DETERMINISTIC CALLED ON NULL INPUT

 NO SQL EXTERNAL ACTION DBINFO;

 CREATE FUNCTION db2xml.soaphttpc (

 endpoint_url VARCHAR(256),

 soapaction VARCHAR(256),

 input_message CLOB(1M))

 RETURNS clob(1M)

 LANGUAGE C PARAMETER STYLE DB2SQL

 SPECIFIC soaphttpcico EXTERNAL NAME ’db2soapudf!soaphttpcico’

 SCRATCHPAD FINAL CALL FENCED

 NOT DETERMINISTIC CALLED ON NULL INPUT

 NO SQL EXTERNAL ACTION DBINFO;

 CREATE FUNCTION db2xml.soaphttpc (

 endpoint_url VARCHAR(256),

 soapaction VARCHAR(256),

 soap_body varchar(3072))

 RETURNS clob(1M)

 LANGUAGE C PARAMETER STYLE DB2SQL

 SPECIFIC soaphttpvico EXTERNAL NAME ’db2soapudf!soaphttpvico’

 SCRATCHPAD FINAL CALL FENCED

 NOT DETERMINISTIC CALLED ON NULL INPUT

 NO SQL EXTERNAL ACTION DBINFO;

 CREATE FUNCTION db2xml.soaphttpcl (

 endpoint_url VARCHAR(256),

 soapaction VARCHAR(256),

 soap_body varchar(3072))

 RETURNS CLOB(1M) as locator

 LANGUAGE C PARAMETER STYLE DB2SQL

Chapter 6. Web service consumer functions 127

SPECIFIC soaphttpviclo EXTERNAL NAME ’db2soapudf!soaphttpviclo’

 SCRATCHPAD FINAL CALL NOT FENCED

 NOT DETERMINISTIC CALLED ON NULL INPUT

 NO SQL EXTERNAL ACTION DBINFO;

The Web service consumer WebSphere Studio plug-in is a component of

WebSphere Studio Application Developer (WSAD) Version 5.1.1.

Parameters used in the enable and disable command

dbName

A database name

uID

Optional: User ID

password

Optional: The password associated with the user ID

–force

Attempts to drop any existing functions.

Web services consumer user-defined functions

A Web services consumer consists of SOAP requests and responses.

Simple Object Access Protocol (SOAP) is an XML protocol consisting of the

following characteristics:

v An envelope that defines a framework for describing the contents of a message

and how to process the message

v A set of encoding rules for expressing instances of application-defined data types

v A convention for representing SOAP requests and responses

DB2 needs the following information to build a SOAP request and receive a SOAP

response.

v A service endpoint, for example, http://services.xmethods.net/soap/servlet/rpcrouter

v Some XML content of the SOAP body, which includes the name of an operation

with requested namespace URI, an encoding style, and input arguments.

v Optional: A SOAP action URI reference. The reference can be empty, as shown in

the following example, http://tempuri.org/ or just ’’.

The DB2 function db2xml.soaphttp() does the following actions:

1. It composes a SOAP request

2. It posts the request to the service endpoint

3. It receives the SOAP response

4. It returns the content of the SOAP body

This is an overloaded function that is used for VARCHAR() or CLOB(), depending

on the SOAP body.

db2xml.soaphttpv returns VARCHAR():

 db2xml.soaphttpv (endpoint_url VARCHAR(256),

 soap_action VARCHAR(256),

 soap_body VARCHAR(3072))

 RETURNS VARCHAR(3072)

db2xml.soaphttpv returns VARCHAR():

 db2xml.soaphttpv (endpoint_url VARCHAR(256),

 soap_action VARCHAR(256),

 soap_body CLOB(1M))

128 Application Development Guide for Federated Systems

RETURNS VARCHAR(3072)

db2xml.soaphttpc returns CLOB():

 db2xml.soaphttpc (endpoint_url VARCHAR(256),

 soapaction VARCHAR(256),

 soap_body VARCHAR(3072))

 RETURNS CLOB(1M)

db2xml.soaphttpc returns CLOB():

 db2xml.soaphttpc (endpoint_url VARCHAR(256),

 soapaction VARCHAR(256),

 soap_body CLOB(1M))

 RETURNS CLOB(1M)

db2xml.soaphttpcl returns CLOB() as locator:

 db2xml.soaphttpcl(endpoint_url VARCHAR(256),

 soapaction VARCHAR(256),

 soap_body varchar(3072))

 RETURNS CLOB(1M) as locator

Example of a DB2 constructed SOAP request envelope

The example in Figure 45 shows an Hypertext Transfer Protocol (HTTP)

post header to post a SOAP request envelope to a host. The bold areas

show the web service endpoint (post path and host) and the content of the

SOAP body. The SOAP body shows a temperature request for zip code

95120.

Example of using DB2 to extract the content of the SOAP response envelope

The example in Figure 46 on page 130 shows the HTTP response header

with the SOAP response envelope. The bold content of the SOAP body

shows the result of the temperature request. The namespace definitions

from the SOAP envelope are not shown here, but they would also be

included.

POST /soap/servlet/rpcrouter HTTP/1.0

Host: services.xmethods.net

Connection: Keep-Alive User-Agent: DB2SOAP/1.0

Content-Type: text/xml; charset="UTF-8"

SOAPAction: ""

Content-Length: 410

<?xml version=’1.0’ encoding=’UTF-8’?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/

 xmlns:SOAP-ENC=http://schemas.xmlsoap.org/soap/encoding/

 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

 xmlns:xsd=http://www.w3.org/2001/XMLSchema >

 <SOAP-ENV:Body>

 <ns:getTemp xmlns:ns="urn:xmethods-Temperature">

 <zipcode>95120</zipcode>

 </ns:getTemp>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Figure 45. A DB2 constructed SOAP request envelope

Chapter 6. Web service consumer functions 129

Tracing Web services consumer events

The Web services consumer user-defined function can be traced by using the DB2

trace utility. In addition, when you use a Windows platform, you can trace HTTP

SOAP requests and responses into a file.

Procedure

To trace the SOAP component in DB2:

Specify the following trace mask:

db2trc on -m *.*.147.*.*

Web services consumer—using the WebSphere Studio User-Defined

Function tool

The Web services consumer User-Defined Function wizard generates and tests

user-defined functions in WebSphere® Studio Version 5 or later.

The wizard used with WebSphere Studio reads the Web Services Definition

Language (WSDL) file. It then generates the user-defined functions (UDFs) that

provide easy access to Web services from database applications. You can use the

generated UDFs in SQL statements to combine relational data with dynamic data

that are retrieved from a Web service. You can invoke the Web service consumer

functions directly in SQL. However, the task can require some advanced

programming skills, and it can be time-consuming. After you generate and deploy

the UDFs, you can use the functions in SQL to combine relational data with

dynamic data that you retrieve from Web services. The generated UDFs are

structured as follows:

1. Construct the SOAP body

2. Invoke the SOAP consumer (submit the SOAP request envelope)

HTTP/1.1 200 OK

Date: Wed, 31 Jul 2002 22:06:41 GMT

Server: Enhydra-MultiServer/3.5.2

Status: 200

Content-Type: text/xml; charset=utf-8

Servlet-Engine: Lutris Enhydra Application Server/3.5.2

 (JSP 1.1; Servlet 2.2; Java™ 1.3.1_04;

 Linux 2.4.7-10smp i386; java.vendor=Sun Microsystems Inc.)

Content-Length: 467

Set-Cookie:JSESSIONID=JLEcR34rBc2GTIkn-0F51ZDk;Path=/soap

X-Cache: MISS from www.xmethods.net

Keep-Alive: timeout=15, max=10

Connection: Keep-Alive

<?xml version=’1.0’ encoding=’UTF-8’?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/

 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

 xmlns:xsd=http://www.w3.org/2001/XMLSchema >

 <SOAP-ENV:Body>

 <ns1:getTempResponse xmlns:ns1="urn:xmethods-Temperature"

 SOAP-ENV:encodingStyle=http://schemas.xmlsoap.org/soap/encoding/ >

 <return xsi:type="xsd:float">85<return>

 </ns1:getTempResponse> </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Figure 46. Using DB2 to extract the content of the SOAP response envelope

130 Application Development Guide for Federated Systems

3. Extract values from the SOAP response

How to generate the user-defined functions from WebSphere Studio

You can generate user-defined functions from the WebSphere Studio application.

Before you begin

1. Enable the DB2 XML Extender database

2. Enable the Web services consumer UDFs for the database

3. Create a project that you want to use with the Web service UDF

4. Create a connection to the database that you just enabled

5. Import the database to your WebSphere Studio, Version 5 project. See WebSphere

Studio Application Developer Programming Guide for more information.

About this task

Within the WebSphere Studio, you can launch the wizard that generates the

user-defined functions (UDFs) in three different ways.

v You can invoke the wizard from the File > New > Other> menu. Then select

Data. The folder expands and you select Web Service User-Defined Function

from the menu. Click the Next push button to proceed.

v You can start the wizard in the Web service client wizard where it appears as an

option in addition to generating a Java proxy.

v You can start the wizard as an option in the Web service wizard when

generating a test client.

Procedure

To generate the user-defined functions from WebSphere Studio:

1. Specify the WSDL file from the first page of the wizard (see Figure 47 on page

133). You use this WSDL file to generate the UDF.

a. Select a WSDL file from the work space or specify an appropriate uniform

resource locator (URL). For example, the currency exchange rate Web

service takes two countries as input parameters and returns the currency

exchange rate between them. The WSDL file is at www.xmethods.net/sd/
2001/CurrencyExchangeService.wsdl.

2. Select the database. In Figure 48 on page 134, you see the database connection

and a schema for which the UDF is generated. Click the Browse push button to

select a database schema from the WebSphere Studio work space. The wizard

requires that the database is enabled for the Web service consumer UDFs, and

the DB2 XML Extender. If there is currently no connection to the specified

database available, an additional message window asks for connection

information. You can choose to immediately deploy the generated UDF into the

database or generate a UDF in the WebSphere Studio work space only. You can

deploy the UDF later.

3. Select the UDFs that you want to create. From the list of operations that are

described in Figure 49 on page 135, select the one that you want to create. The

wizard generates one UDF for every operation that is selected. Since the Web

service that is used for this example provides only one operation, the wizard

selects it automatically. Proceed to the next page.

Chapter 6. Web service consumer functions 131

4. Select options for the UDF. For each operation selected in the previous step,

you can define options for those UDFs, such as changing the function name, or

providing comments on the function. See Figure 50 on page 136 and Figure 51

on page 137.

a. You can choose to build a scalar or a table function. Switching from a table

function to a scalar function makes sense when the wizard should not

automatically map the returned types. In this case, the wizard should return

them as an XML fragment. Being able to switch from a scalar to a table

function allows you to use the UDF in a FROM clause.

v The wizard generates a scalar function when the Web service returns a

simple XML type.

v The wizard generates a table function when it returns a complex XML

type. The table function automatically maps the complex XML type into

multiple columns.
b. You can include the input parameters as columns in the output table by

selecting the Echo the input parameters into the output table check box.

c. You can choose to generate a UDF with dynamic access to the Web service.

When you do not specify the service location (the location attribute of the

soap:address element) in the WSDL document, you generate a dynamic

function. You can select the Create a UDF with dynamic accesses to the

service check box even when the service location is specified to make use of

late binding. When you generate a dynamic function, specify the service

location at runtime as a parameter of the UDF.

d. When using a Web service that can return responses of more than 3000

characters, specify The Web service response message can be a big SOAP

envelope radio button. By default, The Web service response message is

always a small SOAP envelope radio button is specified because this

results in better performance for most Web services. If you specify the small

SOAP response option and the wizard returns a SOAP envelope with more

than 3000 characters, the generated Web Service UDF returns a descriptive

error message.

e. Select the Return the whole SOAP envelope without parsing it check box

to help in debugging the Web services consumer UDFs.
5. From the Parameter page of the options window, you can review, and change

the parameter mappings from WSDL types to SQL types (see Figure 51 on page

137).

6. From the Advanced Options page, you can specify the name for the UDF. If

you do not specify a name, then a unique name is automatically generated by

the database when you deploy the UDF.

7. Review the settings for generating the UDFs. Examine the database and

schema, and the CREATE statement that will be issued on the database (see

Figure 52 on page 138).

8. Click the Next or Finish push button. This generates the UDF and deploys it

into the database, because of the earlier selections to generate and deploy.

9. You can run the Web service consumer UDF directly from the work space. To

run the deployed UDF:

a. Right-click on the UDF.

b. Select Run (see Figure 53 on page 139). The Run Settings window opens

(Figure 54 on page 140).

c. From the Run Settings window, specify the parameter values.

d. Click the OK push button to see the results of your test (Figure 55 on page

140).

132 Application Development Guide for Federated Systems

Examples of the wizard to generate user-defined functions

Figure 47. Select the WSDL file

Chapter 6. Web service consumer functions 133

Figure 48. WSDL page 2

134 Application Development Guide for Federated Systems

Figure 49. Wizard page 3

Chapter 6. Web service consumer functions 135

Figure 50. Select options page 1

136 Application Development Guide for Federated Systems

Figure 51. Select options page 2

Chapter 6. Web service consumer functions 137

Figure 52. Review

138 Application Development Guide for Federated Systems

Figure 53. Test

Chapter 6. Web service consumer functions 139

Figure 54. Run Settings

Figure 55. Results

140 Application Development Guide for Federated Systems

Using the Web services consumer UDFs

Use the User Defined Functions to share information between your relational tables

and your Web services.

Assume that there is a table in a relational database with the following data:

 Table 18. Products table

Product Price

Gear 950.00

Nut 25.00

Bolt 35.00

And assume that there is information about currency types in a remote table.

 Table 19. Currency table

Area

US

EURO

UK

Use the following SQL statement to determine how you can use the currency

exchange rate function to display price information in Euros instead of US dollars.

This accesses real-time exchange rates. Note that the statement uses a built-in

decimal function to cast the price information.

SELECT product, decimal(getRate(’us’, ’euro’) * price, 10, 2)

 as ’EUR_Price’

 FROM products

The result of the statement is:

 Table 20. Using real-time exchange rates

Product EUR_Price

Gear 1019.82

Nut 26.84

Bolt 37.57

Use the following SQL statement to show how you can use relational data as input

to the Web service. The example shows how the currency exchange rate function

can display price information in different currencies.

SELECT p.product, c.area,

 decimal(getRate(’us’, c.area) * price, 10, 2)

 as Price

 FROM products, areas

The result is:

 Table 21. Displaying price information in different currencies

Product Area Price

Gear us 950.00

Nut us 25.00

Bolt us 35.00

Gear euro 1019.82

Chapter 6. Web service consumer functions 141

Table 21. Displaying price information in different currencies (continued)

Product Area Price

Nut euro 26.84

Bolt euro 37.57

Gear uk 650.84

Nut uk 17.12

Bolt uk 23.97

If you use this query often, you might want to define a view to provide a simpler

interface. An example of this view would be:

CREATE VIEW prices AS

 SELECT p.product, c.area,

 decimal(getRate(’us’, c.area) * price, 10, 2)

 as Price

 FROM p.products, c.areas

By using the view, you can code the following simpler query:

SELECT * FROM prices

Use the following SQL statement to show how you can use a UDF that is

generated as a table function in a FROM clause. This example regenerates the

getRate-UDF as a table function. The input parameters are echoed into the output

table.

SELECT t.*

FROM countries c,

table(getRate(’us’, c.countries)) t

The result is:

 Table 22. Using getRate as a table function

AREA1 AREA2 RESULT

us us +1.00000000000000E+000

us euro +1.07280000000000E+000

us uk +6.84800000000000E-001

Web services consumer examples

This topic lists the SOAP samples and how to access them.

The examples that are referred to here work with DB2 Version 9. The file

<DB2_installed path>/samples/soapsample.sql describes how to run the samples.

The file soapsample.sql contains the following list of examples and sample queries:

v getTemp - Retrieves a temperature in Fahrenheit

v getRate - Returns the exchange rate between any two currencies

142 Application Development Guide for Federated Systems

Chapter 7. DADX environment checker

The DADX environment checker performs different syntax and semantic checks on

the NST, DAD and DADX files used to create and run Web services with WORF.

Use the DADX environment checker to help minimize the number of errors that

occur when deploying Web services with WORF.

The DADX environment checker is a Java application that is called from the

command line. When invoked, it produces an output file that contains errors,

warnings, and success indicators. The name of the output text file is user-defined.

If no name is specified, the standard output is used.

The DADX environment checker is included in the WORF installation, in the

tools\lib subdirectory. The JAR files containing the code for this tool are

CheckersCommon.jar and DADXEnvChecker.jar. Make sure that you have a JRE or

JDK Version 1.3.1 or later, installed on your system. Update your CLASSPATH to

include all of the following archives:

v CheckersCommon.jar, DADXEnvChecker.jar and worf.jar, included in the

tools\lib directory where WORF is installed

v xerces.jar . For UNIX and Windows, these files are included in the binary

distribution for Xerces-J 2.0.2 downloadable at http://xml.apache.org/. For

OS/390 and z/OS, these files are included in the IBM XML Toolkit Version 1

Release 4 with PTF UW95866

v soap.jar, included in the binary distribution for SOAP 2.3 downloadable at

http://xml.apache.org, or included in the WebSphere Application Server

installation.

v j2ee.jar, version 1.3 or later. You can download this file from java.sun.com

v qname.jar . You can download this file from java.sun.com

v wsdl4j.jar. You can download this file from http://oss.software.ibm.com/
developerworks/projects/wsdl4j.

v activation.jar, included in the binary distribution for JavaBeans Activation

Framework 1.0.1, downloadable at http://java.sun.com

v mail.jar, included in the binary distribution for JavaMail 1.2 downloadable at

http://java.sun.com

v servlet.jar, included in the WebSphere Application Server installation, or in the

distribution for Jakarta Tomcat Version 3.2.x through 4.0.3 or later downloadable

at http://www.apache.org/

v For UNIX and Windows: db2java.zip, included in the /java directory located

where you installed DB2. For OS/390 and z/OS: db2j2classes.zip, included in

the classes/ subdirectory where you installed DB2 in HFS. You can also use

jcc.jar. The dbDriver parameter in the group.properties files determines the

driver package that you use.

For example, if you are running in the Windows environment, you must set your

CLASSPATH to find the following files:

CheckersCommon.jar;

DADXEnvChecker.jar;

worf.jar;

xerces.jar;

j2ee.jar

© Copyright IBM Corp. 2005, 2007 143

http://oss.software.ibm.com/developerworks/projects/wsdl4j
http://oss.software.ibm.com/developerworks/projects/wsdl4j

qname.jar

wsdl4j.jar

soap.jar;

db2java.zip;

Running the DADX environment checker

The DADX environment checker is a Java program that can run on JDK version

1.3.1 and later.

You run the DADX environment checker by running the following command

written on a single line:

 java com.ibm.etools.webservice.util.Check_install

 [-srv] [-schdir pathToSchemasDir]

 [-sch schemaLocations] [-out outputFile]

 fileToCheck

For example, the following command assumes that you extracted the dxxworf.zip

file to directory c:\dxxworf. This command runs the DADX checker on the

resource files contained by the c:\tomcat\webapps\services directory. The

command then sends the output to myOutputFile.txt in the current directory:

 java com.ibm.etools.webservice.util.Check_install

 -srv -schdir c:\dxxworf\schemas

-out myOutputFile.txt c:\tomcat\webapps\services

DADX environment checker parameters

The parameters that can be used to run the DADX environment checker.

Parameters

-schdir pathToSchemasDir

Specifies the absolute path to the directory where the schemas that are used for

validating NST and DADX files are stored.

-sch schemaLocations

Specifies a list of schemas for the parser to validate the files. The DADX

checker allows the user to specify the value of a property of the Xerces parser.

This property can be used to specify the location of XML schemas that perform

the validation of the files that are being parsed. You specify the location of a

schema by providing the name of the target namespace of the schema (for

example: http://myschema) that is followed by the actual location of the

schema. The path could be a path in the file system (for example,

c:\dir\schema1.xsd) or a valid URL. But, the XML documents themselves can

contain declarations of schema locations. The schemaLocation attribute is used

in an XML document to provide this information. Here is an example of the

beginning of an XML document:

<purchaseReport

 xmlns="http://www.example.com/Report"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.example.com/Report

http://www.example.com/Report.xsd">

For a particular namespace, the parser uses the schema location that is defined

by using the property of the parser, even if the schemaLocation attribute

defines another schema location for the same namespace. The syntax for

schemaLocations is the same as for schemaLocation attributes in instance

documents. For example, http://www.example.com file_name.xsd is the syntax

for schemaLocations. The user can specify more than one XML Schema, for

144 Application Development Guide for Federated Systems

example, -sch http://www.example_1.com file_name_1.xsd

http://www.example_2.com file_name_2.xsd

-out outputFile

Specifies the output text file name. If omitted, the standard output is used.

-srv

Indicates that the checks must be performed on all of the NST, DAD and

DADX files that are found under the Web services module directory (for

example c:\tomcat\webapps\services) that are passed as the fileToCheck. If

this option is not used, then the checks are performed only on the DADX file

that is passed as the file to check and on the related data that is contained in

other resource files. For example, the DAD files that are referred to in this

DADX file are checked and then the DTDIDs that are referred to in these DAD

files are checked in the NST file. Only the data that is related to the DADX file

is checked in the NST file and in the web.xml file.

fileToCheckpath

If parameter -srv is not used, then the value of fileToCheck is the DADX file

that is checked. If parameter -srv is used then the fileToCheck value is the root

directory of the Web services module. For example, the root directory of an

unzipped .war file is services for either the websphere-services.war or

axis-services.war module.

-help

Displays command line option information.

-version

Displays version information.

DADXEnvChecker_sample.txt

A sample file is found in the tools\samples directory in the dxxworf.zip file.

DADXEnvChecker_sample.txt is an output text file that shows the results of the

checks that are performed on a Web services module. The DADX environment

checker generates this file. The checker uses the file name

DADXEnvChecker_sample.txt that is specified in the -out parameter.

Indicating errors and warnings in the output text file

When the -srv parameter is used, errors, warnings, and success indicators are

grouped together in paragraphs. Each paragraph is associated with a checked file.

The results of checking each file are displayed in the output file if you indicated a

file name, or in the standard output device if no filename is indicated.

The paragraphs are grouped together according to the path, or subdirectories, in

directory groups. Here is an excerpt of an output text file showing the error

messages corresponding to the checks performed in files sales_db.nst and

getstart_xcollection.dad belonging to group /groups/dxx_sales_db:

Checking group: c:\tomcat\webapps\services\WEB-

INF\classes\groups\dxx_sales_db

Checking NST file: c:\tomcat\webapps\services\WEB-

INF\classes\groups\dxx_sales_db\sales_db.nst

INFO. Line 5: file "c:\dxx\samples\dtd\getstart.dtd" is accessible.

ERROR. Line 12: file "wrongDtd.dtd" CANNOT be found

either in the file system or in the database.

INFO. Line 8: file "getstart.dtd" is accessible.

Checking DAD file: c:\tomcat\webapps\services\WEB-

Chapter 7. DADX environment checker 145

INF\classes\groups\dxx_sales_db\getstart_xcollection.dad

WARNING. Line 4: DTDID "dtd_.dtd" CANNOT be found in the DTD_REF table.

INFO. Line 9: the DTDID "c:\dxx\samples\dtd\getstart.dtd"

has been declared in the NST file.

Errors, warnings and success messages can begin with a line number if the error or

warning or success event is related to a specific line. The line numbers in the

output text indicate the line numbers where the checked elements associated with

the messages were found in the files. There is no order related to the output within

a paragraph.

Error checking by the DADX environment checker

The DADX environment checker performs checks on web.xml, NST, DAD, and

DADX files.

When you invoke the DADX environment checker with the -srv parameter, the

first check that is made is on the web.xml file within directory WEB-INF. Then, the

DADX environment checker performs checks on the NST, DAD, and DADX files

found in each group directory in the WEB-INF\classes\groups directory.

When you invoke the DADX environment checker without the -srv parameter, the

first check that is made is on the DADX file that is passed as the file to check.

Then, the DADX environment checker checks the DAD files that are referenced in

this DADX file. It also performs checks on the NST file of the group to which the

DADX file belongs. The DADX environment checker eventually checks the

web.xml file within the WEB-INF directory containing the DADX file.

Database error message

For some checks on NST and DADX files, the DADX environment checker

performs the following actions:

1. Attempts to establish a connection to the database by using data contained in

the file group.properties

2. Queries the database with which the group is associated

3. Checks the files of a group for errors

If the connection to the database fails, the DADX environment checker issues an

error message. The following example shows a typical error message:

Checking group: c:\test\jakarta-tomcat-3.2.2

##Checking group: c:\tomcat\webapps\services

\WEB-INF\classes\groups\dxx_travel

WARNING. Connection error [IBM][CLI Driver]

SQL1013N The database alias name or database name

"TRAVELLL" could not be found.

SQLSTATE=42705

Checking errors in the web.xml file

The DADX environment checker checks the WEB-INF\web.xml file that is located

in the root directory of the Web Service module, which is services in this example.

An excerpt of a Web.xml file

<servlet>

<servlet-name>dxx_sales_db</servlet-name>

<servlet-class>com.ibm.etools.webservice.rt.dxx.servlet.DxxInvoker

</servlet-class>

<init-param>

<param-name>faultListener</param-name>

<param-value>org.apache.soap.server.DOMFaultListener

146 Application Development Guide for Federated Systems

</param-value>

</init-param>

<load-on-startup>-1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>dxx_sales_db</servlet-name>

<url-pattern>/sales/*</url-pattern>

</servlet-mapping>

The <servlet-class> tags, which are direct children of the <servlet> tags must have

a value of either com.ibm.etools.webservice.rt.isd.servlet.IsdInvoker or

com.ibm.etools.webservice.rt.dxx.servlet.DxxInvoker. When their values are

different, the checker provides an error message.

Results of a check on <servlet-class> tags

The following example shows the results of the checks performed on

<servlet-class> tags in a web.xml document:

INFO. Line 21: servlet class for

servlet "dxx_sales_db" is a correct servlet class.

ERROR. Line 31: servlet class

"com.ibm.etools.webservice.rt.dxx.servlet.OtherInvoker"

for servlet "dxx_sample"

is NOT a correct servlet class.

INFO. Line 41: servlet class

for servlet "dxx_travel"

is a correct servlet class.

Each <servlet-mapping> tag contains a <servlet-name> tag with a value that must

be the same as the value of the <servlet-name> tag of a <servlet> tag. If this is not

the case the checker provides an error message as shown in the following example:

ERROR. There is no <servlet>

tag declaring servlet

"isd_demos" mapped at line 50.

Each <servlet> tag must have a corresponding <servlet-mapping> tag with the

same servlet name. If a <servlet> tag has no corresponding <servlet-mapping> tag,

the checker provides the following kind of message:

ERROR. There is no

<servlet-mapping> tag

for servlet "dxx_travel" declared

at line 40.

Each <servlet-mapping> tag also contains a <url-pattern> tag with a value that

must be unique. If two <url-pattern> tags have the same value, the checker

provides an error message as shown in the following example:

ERROR. Line 56: "/sales/*" is already

declared as the URL pattern for servlet "isd_demos"

(see line 50).

Checking errors in the NST files

NST files declare the namespace table of the group. They contain mappings

between DTD identifiers and the namespace and location of the XML schema that

is automatically generated from the DTD.

Each group directory might contain an NST file.

Chapter 7. DADX environment checker 147

An excerpt of an NST file

<namespaceTable

xmlns="http://schemas.ibm.com/db2/dxx/nst">

<mapping dtdid="c:\dxx\samples\dtd\getstart.dtd"

 namespace="http://schemas.ibm.com/db2/dxx/samples/dtd/getstart.dtd"

 location="/dxx/samples/dtd/getstart.dtd/XSD"/>

<mapping dtdid="getstart.dtd"

 namespace="http://schemas.myco.com/sales/getstart.dtd"

 location="/getstart.dtd/XSD"/>

The DADX environment checker first validates NST files for correct schema in the

nst.xsd file. Here is an example of a validation error reported by the checker:

ERROR. Validation error, in

"file:///c:/tomcat/webapps/services/WEB-

INF/classes/groups/dxx_sales_db/sales_db.nst",

line 8, column 35. cvc-complex-type.2.4.a:

Invalid content starting with element ’mappin’.

The content must match

’("http://schemas.ibm.com/db2/dxx/nst":mapping){0-UNBOUNDED}’.

ERROR. Validation error, in

"file:///c:/tomcat/webapps/services/WEB-

INF/classes/groups/dxx_sales_db/sales_db.nst",

line 17, column 32. cvc-complex-type.4: Attribute ’dtdid’

must appear on element ’mapping’.

ERROR. Validation error, in

"file:///c:/tomcat/webapps/services/WEB-

INF/classes/groups/dxx_sales_db/sales_db.nst",

line 17, column 32. Duplicate unique value

[ID Value: /order.dtd/XSD] declared for identity constraint

of element "namespaceTable".

The checker checks that the <mapping> elements have the following dtdid

attributes:

v A correct path in the file system.

v A value stored in column DTDID in the db2xml.DTD_REF table.

The following example shows the results of the checks on the <mapping> elements

of an NST file:

INFO. Line 5: file

"c:\dxx\samples\dtd\getstart.dtd" is accessible.

ERROR. Line 14: file

"wrongDtd.dtd" CANNOT be found either in

the file system or in the database.

Checking errors in the DAD files

The Document Access Definition (DAD) file is an XML file that is supported in

DB2 XML Extender. The DAD associates XML documents to DB2 tables through

two alternative access and storage methods: XML columns and XML collections.

An excerpt of the start of a DAD file

<?xml

version="1.0"?>

<!DOCTYPE DAD SYSTEM "c:\dxx\dtd\dad.dtd">

<DAD>

<dtdid>c:\dxx\samples\dtd\getstart.dtd</dtdid>

<validation>NO</validation>

<Xcollection>

<prolog>?xml version="1.0"?</prolog>

<doctype>!DOCTYPE Order SYSTEM

 "c:\dxx\samples\dtd\getstart.dtd"

148 Application Development Guide for Federated Systems

</doctype>

<root_node>

<element_node name="Order">

...

Process of checking the DAD

1. The DADX environment checker checks that the DAD file is valid according to

its DTD dad.dtd. You must ensure that the path to dad.dtd specified in the

DOCTYPE declaration of the DAD is correct.

2. The checker gets the value of the <dtdid> tag if it is present. If the value of this

tag does not match a value stored in column DTDID in the db2xml.DTD_REF

table, then the checker issues a warning. If the <validation> tag in the DAD

contains a value of YES, then the checker issues an error message:

Checking DAD file:

c:\tomcat\webapps\services\WEB-INF

\classes\groups\dxx_sales_db\order.dad

ERROR. Line 4: DTDID "wrongDtd.dtd"

CANNOT be found in the DTD_REF table.

3. The checker determines whether the DAD file declares an Xcollection or an

Xcolumn. If it declares an Xcollection, the DTD specified in the <doctype>

element is extracted. The DADX environment checker checks that this DTD is

declared in the NST file.

Results of checking a DAD

The following example shows the results of the checks of an Xcolumn and an

Xcollection DAD belonging to the same group:

Checking DAD file:

c:\tomcat\webapps\services\WEB-

INF\classes\groups\dxx_sales_db\getstart_xcolumn.dad

INFO. Line 4: DTDID "getstart.dtd" was found in the DTD_REF table.

Checking DAD file: c:\tomcat\webapps\services\WEB-

INF\classes\groups\dxx_sales_db\order-public.dad

INFO. Line 4: DTDID "order.dtd" was found in the DTD_REF table.

ERROR. Line 8: the DTDID "order.dtd" has NOT been

declared in the NST file.

You can perform other checks on the DAD files by using the DAD checker. The

DAD checker is a separate tool that is also contained in the tools\lib directory in

dxxworf.zip. For more information, see the documentation on dadchecker tool at

the WebSphere Application Development Web site.

Checking errors in the DADX files

Document Access Definition Extension (DADX) is a technology for rapidly creating

Web services that access databases. DADX lets you define Web service operations

using the standard SQL statements SELECT, INSERT, UPDATE, DELETE, and

CALL, and the DB2 XML Extender stored procedures.

An excerpt of a DADX file

<?xml version="1.0"?>

<DADX xmlns="http://schemas.ibm.com/db2/dxx/dadx"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<operation name="find">

<documentation >

Returns the parts from order #1 with price > 20000.

 </documentation>

<retrieveXML>

<DAD_ref>getstart_xcollection.dad</DAD_ref>

Chapter 7. DADX environment checker 149

<no_override/>

</retrieveXML>

</operation>

<operation name="findByMinPrice">

<retrieveXML>

<collection_name>

getstart_xcollection.dad

</collection_name>

<no_override/>

<parameter name="minprice"

type="xsd:decrimal"/>

</retrieveXML>

</operation>

Process of checking a DADX file

1. The DADX environment checker validates the DADX file according to its

schema, dadx.xsd.

2. The checker gets the values of the <DAD_REF> or <collection_name> tags and

it checks that the values of these tags are:

v For <DAD_REF> tags, a correct path to a DAD file in the file system.

v For <collection_name>, the name of an enabled collection, which is a value

stored in column COL_NAME from table db2xml.xml_usage.

Results of checking a DADX file

The following example shows the results of the checks performed on a DADX file:

Checking DADX file: c:\tomcat\webapps\services\WEB-

INF\classes\groups\dxx_sales_db\PartOrders.dadx

ERROR. Validation error, in "file:///c:/tomcat/webapps/services/WEB-

INF/classes/groups/dxx_sales_db/PartOrders.dadx",

line 8, column 67. cvc-complex-type.2.4.c:

The matching wildcard is strict, but no declaration

can be found for element ’as’.

INFO. Line 16: for operation "find",

DAD "getstart_xcollection.dad" was found.

ERROR. Line 26: for operation "findAll",

DAD "non_existing_dad.dad" was NOT found.

INFO. Line 44: for operation "findByColor",

DAD "getstart_xcollection.dad" was found.

INFO. Line 65: for operation "findByMinPrice",

DAD "getstart_xcollection.dad" was found.

If an <operation> tag has no <DAD_REF> or <collection_name> tag as a child, the

checker issues a message indicating that no check was performed for this

particular operation, as shown in the following example:

Checking DADX file: c:\tomcat\webapps\services\WEB-

INF\classes\groups\dxx_sample\HelloSample.dadx

INFO. Line 10: no <DAD_ref> or <collection_name>

elements to check for operation "listDepartments".

Checks for deserializer

The DADX environment checker also checks if WORF will be able to find a

deserializer for the parameters declared in the DADX file. A deserializer

reconstructs XML messages received across a network connection into the specified

variable or object. For every <parameter> tag, the value of its type attribute must

be a type that can be deserialized. If no deserializer can be found for a particular

type, the checker provides an error message as shown in the following example:

150 Application Development Guide for Federated Systems

ERROR. Line 13: no deserializer was found

to deserialize a

 "http://www.w3.org/2001/XMLSchema:ssstring", using encoding

"http://schemas.xmlsoap.org/soap/encoding/".

Chapter 7. DADX environment checker 151

152 Application Development Guide for Federated Systems

Chapter 8. WebSphere MQ and DB2 User Defined Functions

Use DB2® and WebSphere® MQ to create SQL requests, develop stored procedures,

extend the database with user-defined functions, and turn database requests into

Web services.

A set of DB2 User Defined Functions (UDFs) allows direct integration with

WebSphere MQ messaging functions. Users can imbed MQ UDFs in their SQL

statements to send, receive, and publish or subscribe messages from or to columns

in tables. The IBM® WebSphere® MQ messaging functions speed implementation of

distributed applications by simplifying application development and testing, and

by using a consistent interface across all platforms.

IBM® WebSphere MQ is used for dynamic integration. It connects applications

through a simple consistent interface or noninvasive adapters on a variety of

platforms across all of the major networking systems. WebSphere MQ allows

systems to operate independently, but assures delivery of information. It includes

message encryption through a Secure Sockets Layer (SSL) for extra security and

enhanced performance. Because of its reliability and robustness, you can use

WebSphere MQ in mission-critical, high-value solutions across all industries today.

Messaging, queuing, and publishing and subscribing are common technologies

within database application environments. These techniques help link together

disparate applications, disseminate real-time information and integrate data and

communication within the enterprise.

WebSphere MQ is a message handling system that enables applications to

communicate in a distributed environment across different operating systems and

networks. WebSphere MQ handles the communication from one program to

another by using application programming interfaces (APIs).

Use the WebSphere messaging facilities to receive, process, and store information.

Then use DB2 to coordinate the collection and process the message data.

WebSphere Federation Server acts as the source and destination for XML

information that is processed by WebSphere MQ Integrator.

WebSphere MQ provides support for applications with a number of application

programming interfaces:

Message Queuing Interface

Message queuing is one method of program-to-program communication.

Message Queuing allows programs to send and receive application-specific

data without direct connections. Programs communicate by sending or

retrieving messages to or from named queues. Programs do not need to

know the location of the named queues. You can replicate programs for

availability or performance. You can relocate programs or queues.

Java™ Messaging Services

The Java Messaging Services application programming interfaces allow

applications to create, send, receive, and read messages. They enable

asynchronous and reliable communications.

© (C) Copyright IBM Corporation 2004, 2006 153

WebSphere MQ messaging interface

The WebSphere MQ messaging interface helps you establish and maintain services

and policies and the related attributes of messages.

You can connect to WebSphere MQ, the transport layer, by using a WebSphere MQ

server. The messaging interface communicates with the application programs by

using MQ user-defined functions. The messaging interface provides access to the

WebSphere MQ server and the messaging functions through the DB2 database

objects. The functions that are required in a particular installation are defined by

using services and policies.

Sender, receiver, publisher, and subscriber objects are services of the MQ messaging

interface.

The DB2MQ configuration tables for the MQ messaging interface are loaded by a

system administrator. The configuration tables define various types of MQ services

and policies, as well as other messaging objects.

Sending and receiving messages

You can use the MQ messaging interface to send and receive messages in a

number of different ways:

v Send and forget (datagram), where no reply is needed

v Request and response, where a sending application needs a response to the

request message

v Publish and subscribe, where a broker manages the distribution of messages

Interoperability

The MQ messaging interface is interoperable with other WebSphere MQ interfaces.

By using the MQ messaging interface, you can exchange messages with one or

more of the following:

v Another application that is using the messaging interface.

v Any application that is using the message queue interface (MQI).

v A message broker (such as WebSphere MQ Publish/Subscribe or WebSphere MQ

Integrator).

Message handling and the MQ messaging interface

The MQ messaging interface is used with the user defined functions in SQL

statements to allow you to combine DB2 access with WebSphere MQ message

handling.

Message handling

The WebSphere MQ message handling system takes a piece of information (the

message) and sends it to its destination. WebSphere MQ guarantees delivery

despite any network disruptions that might occur.

Applications programmers use the MQ messaging interface to send messages and

to receive messages. The three components in the MQ messaging interface are the

message, the service, and the policy:

v The message defines what one program sends to another

154 Application Development Guide for Federated Systems

v The service defines where the message is going to or coming from

v The policy defines how to handle the message

To send a message that uses the MQ messaging interface, an application must

specify the message data, the service, and the policy. A system administrator

defines the WebSphere MQ configuration that is required for a particular

installation. DB2 provides the default service and default policy,

DB2.DEFAULT.SERVICE and DB2.DEFAULT.POLICY, that application

programmers can use to simplify their programs.

WebSphere MQ messages

WebSphere MQ uses messages to pass information between applications. Messages

consist of the following parts:

v The message attributes, which identify the message and its properties. The MQ

messaging interface uses the attributes and the policy to interpret and construct

WebSphere MQ headers and message descriptors.

v The message data, which is the application data that is carried in the message.

The messaging interface does not act on this data.

Attributes are properties of a WebSphere MQ message. With the MQ messaging

interface, the message can contain the attributes, or a system administrator can

define the attributes in a default policy. The application programmer is not

concerned with the details of message attributes.

WebSphere MQ services

A service describes a destination to which an application sends messages or from

which an application receives messages. WebSphere MQ calls a destination a

message queue, and a queue resides in a queue manager.

Applications can put messages on queues or get messages from them by using the

services and policies defined by the configuration tables. A system administrator

sets up the parameters for managing a queue, which the service defines. Therefore,

the WebSphere Federation Server messaging interface hides the complexity from

the application programmer. An application program selects a service by specifying

it as a parameter for WebSphere MQ function calls.

WebSphere MQ policies

A policy controls how the MQ messaging functions handle messages. Policies

control such items as:

v The attributes of the message, for example, the priority

v Options for send and receive operations, for example, whether an operation is

part of a unit of work

DB2 and WebSphere Federation Server provide the default policies. Alternatively, a

system administrator can define customized policies and store them in a set of DB2

configuration tables. An application program can specify a policy as a parameter

for WebSphere MQ function calls.

Chapter 8. WebSphere MQ and DB2 User Defined Functions 155

Installing and using the DB2 WebSphere MQ functions

The DB2 WebSphere MQ functions are available in DB2 Version 9.1 for Linux,

UNIX, and Windows as user-defined functions. By using these functions, users can

access the WebSphere MQ queues from DB2 database objects.

Before you begin

1. Install DB2 Version 9.1.

2. Install WebSphere MQ Server Version 6 or a later edition on the same machine

as the DB2 server.

3. Ensure that the owner of the DB2 instance and the owner of the db2fmp

process are in the mqm group.

4. On Solaris, open a command prompt, and type: ulimit -n 1024. This command

sets the limit for the number of files that are opened and allows you to create a

queue manager for Solaris.

5. If you use the WebSphere MQ user defined functions with the db2mq1c schema

and you want to enable the functions for transactional context, you must issue

the following command:

update dbm cfg using federated yes

6. Install DB2 XML Extender, a component of DB2 Version 9.1, if you want to use

the MQ XML functions.

7. If you choose not to use the DB2 default queue manager and queue, create the

message queues and WebSphere MQ objects by using the WebSphere MQ script

commands (MQSC) that are provided by WebSphere MQ and DB2.

8. Edit the queue information in the amtsamp.tst and amtsdfts.tst sample files to

help you create the appropriate objects.

9. Define the queues for the target queue Manager with the runmqsc command,

as in the following example:

runmqsc QMName <amtsamp.tst

You can use the message queues and objects in SQL statements only after they

are created.

Restrictions

v The DB2 Version 9.1 MQ transactional functions that exist under the schema

db2mq1c do not support CLOB type messages.

v The enable utility of the transactional MQ user-defined functions allows only 40

corresponding policies to exist in the MQPolicy table for the queue manager

specified with the -q option. The -q option only applies to MQ user defined

functions under schema db2mq1c. If you want to use a queue manager other

than DB2MQ_DEFAULT_MQM, then you must create the queue manager.

v The transactional MQ user-defined functions support only one Queue Manager

within a single transaction. The queue manager that you specify in Service and

Policy must match. If you leave the Queue Manager blank in the service point,

WebSphere MQ defaults to the manager designated by Policy. There is a default

set of MQ queues and a default Queue Manager that is normally created during

the MQ installation and the enable_MQFunctions processes.

v The Queue name and the Queue Manager name in the configuration tables do

not support a double byte character set or a Unicode character set.

v MQ user-defined functions are not supported on a multiple processor partition

(MPP) or DB2 Database Partitioning Feature (DPF) environment.

156 Application Development Guide for Federated Systems

About this task

You use the commands, enable_MQFunctions and disable_MQFunctions, for

transactional and nontransactional MQ user-defined functions. The MQ

user-defined functions are defined as a group or set under different schema names.

The groups that do not support transactions have the schema db2mq. The groups

that do support transactions have the schema db2mq1c. The enable_MQFunctions

command with the options that support transactions, allows you to select a set of

MQ user-defined functions to install or uninstall for transactional support. If you

set a value in the -v parameter, you specify the type of schema that the

enable_MQFunctions command creates. The possible values are all, 0pc, or 1pc. If

you specify all, then the enablement creates all schemas under user-defined

functions (db2mq, db2mq1c).

If you do not specify a value in -v parameter, the enablement defaults to the all

option.

Procedure

To configure the DB2 WebSphere MQ functions:

1. Connect to the database on which you want to enable MQ functions. For

example, if you are working in the SAMPLE database, issue the following

command:

db2 connect to sample

2. Run the amtsetup.sql script on the database if this is the first time you are

trying to enable the database, or if you want to drop the existing configuration

tables and start a new configuration. If this is the first time you are enabling

the database there are no configuration tables that exist for this database, so

you can ignore the errors from the drop table statements.

a. Change your current directory to sqllib/cfg/mq.

b. From the mq directory type db2 -tvf amtsetup.sql.
3. Configure and enable a database for the WebSphere MQ functions. The

enable_MQFunctions command checks that you have properly set up the

WebSphere MQ environment. It then installs and creates a default configuration

for the WebSphere MQ functions. Then, it enables the specified database with

these functions, and confirms that the configuration works.

a. Enable the transactional and nontransactional user-defined functions. This

example assumes that the user is connected to the SAMPLE database.

enable_MQFunctions -n sample -u user1 -p password1

b. Create DB2MQ1C functions under the schema DB2MQ1C. This example

assumes that the user is connected to the SAMPLE database. The value 1pc

in the -v parameter means that you want to create the db2mq1c schema:

enable_MQFunctions -n sample -u user1 -p password1 -v 1pc

4. Test the MQ functions by using the command line processor on a Windows

environment. Issue the following commands after you connect to the currently

enabled database:

 Command Description

values DB2MQ1C.MQSEND(’a test’) Sends the message a test to the

DB2MQ_DEFAULT_Q queue. You can use

this statement in a DB2 transaction that you

can commit or roll back as part of the unit

of work.

Chapter 8. WebSphere MQ and DB2 User Defined Functions 157

Command Description

values DB2MQ1C.MQRECEIVE() Receives the message back. The statement

assumes that you have used some default

configuration. You can use this statement in

a DB2 transaction that you can commit or

roll back as part of the unit of work.

Capabilities of DB2 WebSphere MQ functions

Use the DB2 WebSphere MQ functions to send messages to a message queue or to

receive messages from the message queue. In addition, you can send a request to a

message queue and receive a response.

You can use WebSphere MQ functions with DB2:

v User-defined functions with no transactional semantics (schema name is

DB2MQ)

v User-defined functions that use single-phase commit semantics (schema name is

DB2MQ1C)

The schema name indicates the type of user-defined function.

Operations

The DB2 WebSphere MQ functions support the following types of operations:

Send and forget

The messages do not need reply.

Read The application can read one or all messages without removing them from

the queue.

Receive

The application can receive and remove one or all messages from the

queue.

Request and response

A sending application needs a response to a request.

Using the messaging operations in SQL statements

By using DB2 scalar and table functions along with views with the federated

server, you can incorporate message handling operations in SQL queries from any

environment. If you have a WebSphere MQ client or server, you can use the

messaging operations within SQL statements. For example:

SELECT DB2MQ1C.MQSend (’MyAddress’|| firstname ||’ ’|| lastname)

 FROM employee

DB2 WebSphere MQ scalar functions

The DB2 WebSphere MQ scalar include the following functions:

MQREAD

Returns a message in a VARCHAR variable from the WebSphere MQ

location that is specified by receive-service, by using the policy that is

defined in service-policy. This operation does not remove the message from

the head of the queue but instead returns it. If no messages are available to

be returned, a null value is returned.

158 Application Development Guide for Federated Systems

�� MQREAD (

receive-service

,

service-policy

) ��

MQRECEIVE

Returns a message in a VARCHAR variable from the WebSphere MQ

location that is specified by receive-service, by using the policy that is

defined in service-policy. This operation removes the message from the

queue. If correlation-id is specified, the first message with a matching

correlation identifier is returned; if correlation-id is not specified, the

message at the head of queue is returned. If no messages are available to

be returned, a null value is returned.

�� MQRECEIVE �

� ()

receive-service

,

service-policy

,

correl-id

 ��

MQSEND

Sends the data in a VARCHAR variable msg-data to the WebSphere MQ

location that is specified by send-service, by using the policy that is defined

in service-policy. An optional user-defined message correlation identifier can

be specified by correlation-id. The return value is 1 if successful or 0 if not

successful.

�� MQSEND (

send-service

,

service-policy

,

 msg-data �

�
(1)

,

correl-id

) ��

Notes:

1 The correl-id cannot be specified unless a service and a policy are also

specified. It is used to associate a request message with a response

message.

You can send or receive messages in VARCHAR variables for the schemas DB2MQ

and DB2MQ1C. The maximum length for a DB2MQ message and a DB2MQ1C

message in a VARCHAR variable is 32000 bytes long.

DB2 WebSphere MQ table functions

The WebSphere MQ table functions includes the following functions:

MQREADALL

Returns a table that contains the messages and message metadata in

VARCHAR variables from the WebSphere MQ location that is specified by

receive-service, by using the policy that is defined in service-policy. This

operation does not remove the messages from the queue. If num-rows is

specified, a maximum of num-rows messages is returned; if num-rows is not

specified, all available messages are returned.

Chapter 8. WebSphere MQ and DB2 User Defined Functions 159

�� MQREADALL (

receive-service

,

service-policy

 �

�
num-rows

) ��

MQRECEIVEALL

Returns a table that contains the messages and message metadata in

VARCHAR variables from the WebSphere MQ location that is specified by

receive-service, by using the policy that is defined in service-policy. This

operation removes the messages from the queue. If correlation-id is

specified, only those messages with a matching correlation identifier are

returned; if correlation-id is not specified, all available messages are

returned. If num-rows is specified, a maximum of num-rows messages is

returned; if num-rows is not specified, all available messages are returned.

�� MQRECEIVEALL (�

�
receive-service

,

service-policy

,

correl-id

 �

�
num-rows

,

) ��

Sends or receive messages in VARCHAR variables. The maximum length for a

message in a DB2MQ variable or a DB2MQ1C variable is a VARCHAR 32 000

bytes. The first column of the result table of a DB2 WebSphere MQ table function

contains the message.

Publish and subscribe messages

Publishing and subscribing messages gives you more control over which services

can receive messages. Publish and subscribe systems provide a scalable, secure

environment in which many subscribers can register to receive messages from

multiple publishers. You can use the trigger facility within DB2 to automatically

publish messages as part of a trigger invocation.

MQPUBLISH

Publishes data to WebSphere MQ. This function requires the installation of

either WebSphere MQ Publish/Subscribe or WebSphere MQ Integrator.

�� MQPUBLISH (

publisher-service

,

service-policy

,

 �

� msg-data

,

topic

(1)

,

correl-id

) ��

160 Application Development Guide for Federated Systems

Notes:

1 The correl-id cannot be specified unless a service and a policy are also

specified.

MQSUBSCRIBE

Registers interest in WebSphere MQ messages that are published on a

specified topic. The subscriber-service specifies a logical destination for

messages that match the specified topic. Messages that match a topic are

placed on the queue that is defined by subscriber-service. Messages can be

read or received through a subsequent call to MQREAD, MQRECEIVE,

MQREADALL, or MQRECEIVEALL. This function requires the installation

and configuration of an WebSphere MQ-based publish and subscribe

system, such as WebSphere MQ Integrator or WebSphere MQ

Publish/Subscribe.

�� MQSUBSCRIBE (

subscriber-service

,

service-policy

,

 �

� topic) ��

MQUNSUBSCRIBE

Unregisters an existing message subscription. The subscriber-service,

service-policy, and topic are used to identify which subscription is

canceled. This function requires the installation and configuration of an

WebSphere MQ-based publish and subscribe system, such as WebSphere

MQ Integrator or WebSphere MQ Publish/Subscribe.

�� MQUNSUBSCRIBE (

subscriber-service

,

service-policy

,

 �

� topic) ��

Commit environment for DB2 WebSphere MQ functions

The commit environment for DB2 WebSphere MQ user-defined functions depends

on the schema name and the type of connection.

Schema name

DB2 provides these versions of commit when you use WebSphere MQ user-defined

functions:

v A non-transactional user-defined function with a schema name of DB2MQ

v A single-phase commit with a schema name of DB2MQ1C

If your application uses non-transactional user-defined functions, any DB2 commit

or rollback operations are independent of the WebSphere MQ operations. If you

roll back a transaction, the MQ functions do not discard the messages that you

sent to a queue within the current unit of work.

In this environment, WebSphere MQ controls its own queue operations. A DB2

commit or rollback does not affect when or if your application adds or deletes

messages to or from an WebSphere MQ queue.

Chapter 8. WebSphere MQ and DB2 User Defined Functions 161

A transaction is commonly referred to in DB2 as a unit of work. A unit of work is

a recoverable sequence of operations within an application process. It is used by

the database manager to ensure that a database is in a consistent state. Any

reading from or writing to the database is done within a unit of work. A unit of

work starts when the first SQL statement is issued on the database. The application

must end the unit of work by issuing either a commit or rollback statement.

Connection type

The commit environment for MQ user-defined functions is also dependent on the

type of connection that your application includes. The CONNECT statement

establishes a connection between an application process and its server. A type 1

CONNECT statement supports the single database per unit of work (Remote Unit

of Work) semantics. A type 2 CONNECT statement supports the multiple

databases per unit of work (Application-Directed Distributed Unit of Work)

semantics. You can also specify a SYNCPOINT of ONEPHASE. A SYNCPOINT

defines how commit or rollbacks are coordinated among multiple database

connections. With a SYNCPOINT of ONEPHASE, updates can only occur against

one database in the unit of work, and all other databases are read-only.

If your application uses single-phase commit with your data sources, and a

transaction is rolled back, the application might discard the message or produce an

error. This action can result in an inconsistent state. The rules for single-phase

commit with SYNCPOINT=ONEPHASE are as follows:

v Updates are allowed only for one data source

v Messaging functions cannot be combined with other updates

The following table shows the DB2 MQ user-defined function semantics:

 Table 23. DB2 MQ user-defined function semantics

Connection type Single-phase commit (schema name=DB2MQ1c)

Type 1 (ONEPHASE) select db2mq1c.mqsend

 (e.LASTNAME || ’ ’ || d.DEPTNAME)

 from EMPLOYEE e,

 DEPT d

where e.DEPARTMENT =

 d.DEPTNAME

An application can select and send; it can update only one

data source.

Type 2 (TWOPHASE) Message functions not allowed.

Configuring the MQ messaging interface

The messaging interface that is used by WebSphere MQ user defined functions is a

simple programming interface that provides support for point-to-point messaging

and publish and subscribe messaging.

The messaging interface simplifies application development by moving function

from the application program into a database structure. The three essential parts of

the messaging interface syntax are the service, the policy, and the message. The

service defines where to send the message. The policy defines how to send the

message. The message is what is sent. The service encapsulates local or remote

162 Application Development Guide for Federated Systems

queues. The policy encapsulates options for the message such as priority or retry.

The message part might contain application message data and attributes such as

format or correlation identifiers.

WebSphere MQ configuration parameters

When you configure your MQ user defined functions, the information is

maintained in tables that are available in DB2 Version 9.1.

The WebSphere MQ messaging interface is available to your application by using

the column values in the DB2 configuration tables. Some of the parameters that are

available in the tables including the following parameters:

Sender service

Represents a destination such as a WebSphere MQ queue to which

messages are sent.

Receiver service

Represents a source from which messages are received.

Publisher

Contains a sender service where the destination is a publish/subscribe

broker.

Subscriber

Contains a sender service to send subscribe and unsubscribe messages to a

publish/subscribe broker and a receiver service to receive publications

from the broker.

Policy Defines how to handle the message, including items such as priority,

persistence, and whether it is included in a unit of work.

All WebSphere MQ user defined functions are implemented by using the

configuration table parameters. When you use the user defined functions, the

parameters are created automatically and populated as needed with values from

the configuration tables. When you configure the message environment, the

information is stored in the configuration tables. The configuration tables are part

of schema DB2MQ.

MQService

The MQService table maintains various types of service point entries and the

associated attributes. There are sample values for most of the attributes.

 Table 24. The MQService table with pre-defined values in the table

Column name Type

Default

Value

Allowable

Value Sample value

serviceName varchar(48) not

null, primary key

Not

applicable

Not

applicable

’DB2.DEFAULT.SERVICE’

queueName varchar(48) NOT

NULL

Not

applicable

Not

applicable

’DB2MQ_DEFAULT_Q’

queueMgrName varchar(48) NOT

NULL

’’ Not

applicable

’DB2MQ_DEFAULT_MQM’

ccsid varchar(6) NOT

NULL

’’ Not

applicable

’’

description varchar(400) ’’ Not

applicable

’DB2 MQ UDFs default service’

Chapter 8. WebSphere MQ and DB2 User Defined Functions 163

MQPubSub

This table defines the Publisher/Subscriber Service Points for the MQ

Publish/Subscribe functions.

 Table 25. MQPubSub: pre-defined Publisher/Subscriber Service Points

Column name Type Default value

Allowable

value Sample value

PubSubName varchar(48)

not null

unique

Not applicable Not

applicable

’DB2.DEFAULT.SUBSCRIBER’

broker varchar(48)

not null

Not applicable Not

applicable

’AMT.SAMPLE.SUBSCRIBER’

receiver varchar(48)

NOT NULL

’’ Not

applicable

’AMT.SAMPLE.SUBSCRIBER.RECEIVER’

type char(1) NOT

NULL

Not applicable v S

(Subscriber

Service

v P

(Publisher

Service)

’S’

description varchar(400®) ’’ Not

applicable

’DB2 MQPublish default Publisher service’

Note:

v If the type is S, then a value is required in the receiver column.

v The values in the broker and the receiver columns must refer to an entry in the

MQService table.

MQPolicy

The MQPolicy table maintains various policy entries and the associated attributes

of the policies.

 Table 26. MQPolicy

Column name Type Default value Allowable value Sample value

policyName varchar(48)

not null,

primary

key

Not applicable Not applicable ’AMT.SAMPLE.POLICY’

connectionName varchar(48)

NOT

NULL

’’. Not applicable ’defaultConnection’

connectionMode char(1)

NOT

NULL

’L’ v R (Real)

v L (Logical)

’L’

164 Application Development Guide for Federated Systems

Table 26. MQPolicy (continued)

Column name Type Default value Allowable value Sample value

snd_priority char(1)

NOT

NULL

’T’

(AsTransport)

v ’0’

v ’1’

v ’2’

v ’3’

v ’4’

v ’5’

v ’6’

v ’7’

v ’8’

v ’9’

v ’T’

’T’

snd_persistent char(1)

NOT

NULL

’T’

(AsTransport)

v ’Y’

v ’N’

v ’T’

’T’

snd_expiry integer

NOT

NULL

0 = unlimited. > = 0 0

snd_retrycount integer

NOT

NULL

0 > = 0 0

snd_retry_interval integer

NOT

NULL

1000

milliseconds

> = 0 milliseconds 1000 milliseconds

snd_newCorrelID char(1)

NOT

NULL

’N’ v ’Y’

v ’N’

’N’

snd_responseCorrelID char(1)

NOT

NULL

’M’ v ’M’ (MessageID)

v ’C’ (CorrelID)

’M’

snd_exceptionAction char(1)

NOT

NULL

’D’ v ’Q’ (DLQ)

v ’D’ (Discard)

’D’

snd_reportData char(1)

NOT

NULL

’R’ v ’R’ (Report)

v ’D’ (Report_With_Data)

v ’F’

(Report_With_Full_Data)

’R’

snd_rtException char(1)

NOT

NULL

’N’ v ’Y’

v ’N’

’N’

snd_rtCOA char(1)

NOT

NULL

’N’ v ’Y’

v ’N’

’N’

snd_rtCOD char(1)

NOT

NULL

’N’ v ’Y’

v ’N’

’N’

Chapter 8. WebSphere MQ and DB2 User Defined Functions 165

Table 26. MQPolicy (continued)

Column name Type Default value Allowable value Sample value

snd_rtExpiry char(1)

NOT

NULL

’N’ v ’Y’

v ’N’

’N’

rcv_waitInterval integer

NOT

NULL

30 milliseconds > = -1 milliseconds

(-1=unlimited)

30 milliseconds

rcv_convert char(1

NOT

NULL

’Y’ v ’Y’

v ’N’

’Y’

rcv_handlePoisonMsg char(1)

NOT

NULL

’Y’ v ’Y’

v ’N’

’Y’

rcv_rcvTruncatedMsg char(1)

NOT

NULL

’N’ v ’Y’

v ’N’

’N’

rcv_openShared char(1)

NOT

NULL

’Y’ v ’Y’

v ’N’

’Y’

pub_retain char(1)

NOT

NULL

’N’ v ’Y’

v ’N’

’N’

pub_othersOnly char(1)

NOT

NULL

’N’ v ’Y’

v ’N’

’N’

pub_suppressReg char(1)

NOT

NULL

’Y’ v ’Y’

v ’N’

’Y’

pub_pubLocal char(1)

NOT

NULL

’N’ v ’Y’

v ’N’

’N’

pub_direct char(1)

NOT

NULL

’N’ v ’Y’

v ’N’

’N’

pub_anonymous char(1)

NOT

NULL

’N’ v ’Y’

v ’N’

’N’

pub_correlasID char(1)

NOT

NULL

’N’ v ’Y’

v ’N’

’N’

sub_subLocal char(1)

NOT

NULL

’N’ v ’Y’

v ’N’

’N’

sub_NewPubsOnly char(1)

NOT

NULL

’N’ v ’Y’

v ’N’

’N’

sub_PubOnReqOnly char(1)

NOT

NULL

’N’ v ’Y’

v ’N’

’N’

166 Application Development Guide for Federated Systems

Table 26. MQPolicy (continued)

Column name Type Default value Allowable value Sample value

sub_informIfRet char(1)

NOT

NULL

’Y’ v ’Y’

v ’N’

’Y’

sub_unsubAll char(1)

NOT

NULL

’N’ v ’Y’

v ’N’

’N’

sub_anonymous char(1)

NOT

NULL

’N’ v ’Y’

v ’N’

’N’

sub_correlAsID char(1)

NOT

NULL

’N’ v ’Y’

v ’N’

’N’

Description varchar

(400)

’’ Not applicable ’’

MQHost

This table links the connectionName value that is used in the MQPolicy table to

the actual queue manager when the connectionMode has a value of “L”, which

means Logic.

 Table 27. MQHost with pre-defined values

Column name Type Default value

Allowable

value Sample value

connectionName varchar(48) not

null unique

Not applicable Not applicable ’defaultConnection’

queueMgrName varchar(48) not

null

’’ Not applicable ’DB2MQ_DEFAULT_MQM’

WebSphere MQ function messages

WebSphere MQ provides the message transport. The messages define what is sent.

Information is passed between communicating applications by using messages.

Messages consist of attributes and data:

v The message attributes identify the message and its properties. The message

interface uses the attributes and the information in the policy to interpret and

construct WebSphere MQ headers and message descriptors. Attributes are

properties of the message object. An application can set the attributes before

sending a message or access the attributes after receiving a message. The

attributes can be defined in a policy that is created by the system administrator.

v The message data is carried in the message. The size of the message can be

VARCHAR(32000) or CLOB(1 MB) depending on the function name or the data

type that is provided as the function parameter.

Examples of message attributes

The following list contains message attribute examples:

Chapter 8. WebSphere MQ and DB2 User Defined Functions 167

MessageID

An identifier for the message. It is usually unique, and typically it is

generated by WebSphere MQ acting as the message transport.

CorrelID

A correlation identifier that can be used as a key to correlate a response

message to a request message.

Format

The structure of the message.

Topic Indicates the content of the message for publish or subscribe applications.

WebSphere MQ messaging Services

A service represents a destination that applications send messages to or receive

messages from.

In WebSphere MQ a destination is called a message queue. A queue resides in a

queue manager. The parameters that describe the messages on a queue are defined

in a service by the systems administrator.

Point-to-point application

In a point-to-point application, the sending application knows the destination of

the message. Point-to-point applications can be send and forget, or datagrams, in

which a reply to the message is not required. Point-to-point applications can be

request or response messages, where the message specifies the destination for the

response message. For example, the correlation identifier in the Table 26 on page

164 configuration table, is used for a request/reply type of application in MQ user

defined functions

Publish or subscribe application

In a publish/subscribe application, the providers of information (publishers) are

separate from the consumers of that information (subscribers).

Publishers supply information about a subject by sending it to a broker. The

subject is identified by a topic. A publisher can publish information on more than

one topic, and many publishers can publish information on a particular topic.

Subscribers decide what information might be of interest, and subscribes to the

relevant topics by sending a message to the broker. When information is published

on one or the topics of interest, the broker sends it to the subscriber.

There can be many brokers in a publish or subscribe system. The brokers

communicate with each other to exchange subscription requests and publications.

A publication is propagated to another broker if a subscription to that topic exists

on the other broker.

Types of service

Different types of service are defined to specify the mapping from the messaging

interface to resources in the messaging network.

v Senders and receivers establish one-way communication pipes for sending and

receiving messages.

168 Application Development Guide for Federated Systems

v A publisher contains a sender that is used to publish messages to a publish or

subscribe broker.

v A subscriber contains a sender, that is used to subscribe to a publish or subscribe

broker, and a receiver, that is used to receive publications from the broker.

The messaging interface provides default services that are used unless otherwise

specified by the application program. You can also define your own service that is

customized and stored in the configuration tables when calling a function. Many of

the options used by the services are contained in a policy.

Messaging Policies

A policy controls how the messaging interface functions operate.

Policies control some of the following items:

v The attributes of the message, such as the priority.

v Options for send and receive operations, such as whether an operation is part of

a unit of work.

v Publish or subscribe options, such as whether a publication is retained.

v Added value functions that can be invoked as part of the call, such as retry.

The messaging interface provides default policies. A systems administrator can also

define customized policies and store them in the configuration tables. An

application program selects a policy by specifying it as a parameter on calls.

You can choose to use a different policy on each call and specify in the policy only

those parameters that are relevant to the particular call. You can then have policies

shared between applications, such as a Transactional_Persistent_Put policy.

Another approach is to have policies that specify all the parameters for all the calls

made in a particular application, such as a Payroll_Client policy. Both approaches

are valid with the messaging interface, but a single policy for each application will

simplify management of policies. The messaging interface will automatically retry

when temporary errors are encountered on sending a message, if requested by the

policy. (Examples of temporary errors are queue full, queue disabled, and queue in

use.)

Service points

Sender and receiver definitions are represented in the messaging interface

configuration by a single definition called a service point.

 Table 28. Sender and receiver service points

Attribute Comments

Queue Name Mandatory name of the queue representing

the service that messages are sent to or

received from.

Queue Manager Name Name of the queue manager that owns the

Queue. If blank, the system default queue

manager is used.

Chapter 8. WebSphere MQ and DB2 User Defined Functions 169

Table 28. Sender and receiver service points (continued)

Attribute Comments

CCSID Coded character set identifier of the

destination application. Can be read by

sending applications in order to prepare a

message in the correct CCSID for the

destination. It is not used by the messaging

interface. Leave blank if the CCSID is

unknown (the default), or set to the CCSID

number.

 Table 29. Subscriber service points

Attribute Comments

Name Mandatory name.

Sender Service The name of the sender service that defines

the publish/subscribe broker. It must be a

valid service point name.

Receiver Service The name of the receiver service that defines

where publication messages are to be sent. It

must be a valid service point name.

 Table 30. Publisher service points

Attribute Comments

Name Mandatory name, specified on AMI calls.

Sender Service The name of a sender service that defines

the publish/subscribe broker. It must be a

valid service point name.

Policy definitions

Policy definitions are available for attributes such as initialization, send, receive,

subscribe, and publish.

 Table 31. Initialization attributes

Attribute Comments

Name Mandatory policy name, specified on

messaging interface calls.

Connection Name If Connection Mode is set to ‘Real’,

Connection Name is the name of the queue

manager the application will connect to. If

blank, the default local queue manager is

used. If Connection Mode is ‘Logical’, the

Connection Name attribute is required and

is the name of the logical connection that is

defined in the MQHost table to generate the

queue manager to which connection is

made.

170 Application Development Guide for Federated Systems

Table 31. Initialization attributes (continued)

Attribute Comments

Connection Mode If Connection Mode is set to ‘Real’ (the

default), Connection Name is used as the

queue manager name for connection. If

Connection Mode is set to ‘Logical’,

Connection Name is used as a key to the

host file on the system where the application

is running that maps Connection Name to a

queue manager name. This allows

applications running on different systems in

the network to use the same onnection name

to connect to different local queue managers.

 Table 32. Send attributes

Attribute Values Default Comments

Priority v 0-9

v T as Transport

T as Transport The priority set in

the message, where 0

is the lowest priority

and 9 is the highest.

When set to T as

Transport, the value

from the queue

definition is used.

You must deselect As

Transport before you

can set a priority

value.

Persistence v Yes

v No

v T as Transport

T as Transport The persistence set in

the message, where

Yes is persistent and

No is not persistent.

When set to T as

Transport, the value

from the underlying

queue definition is

used.

Expiry Interval v 0-999999999

v Unlimited

Unlimited A period of time (in

tenths of a second)

after which the

message will not be

delivered.

Retry Count 0-999999999 0 The number of times

a send will be retried

if the return code

gives a temporary

error. Retry is

attempted under the

following conditions:

Queue full, Queue

disabled for put,

Queue in use.

Retry Interval 0-999999999 1000 The interval (in

milliseconds)

between each retry.

Chapter 8. WebSphere MQ and DB2 User Defined Functions 171

Table 32. Send attributes (continued)

Attribute Values Default Comments

New Correl Id v Y

v N

N When yes, each

message is sent with

a new Correl Id

(except for response

messages, where this

is set to the Message

Id or Correl Id of the

request message).

Response Correl Id v ’M’ for Message Id

v ’C’ for Correl Id

’M’ for Message Id The identifier in the

Correl Id of a

response or report

message. This is set

to either the Message

Id or the Correl Id of

the request message,

as specified.

Exception Action v Discard

v DLQ

DLQ Action when a

message cannot be

delivered. When set

to DLQ, the message

is sent to the

dead-letter queue.

When set to Discard,

it is discarded.

Report Data v Report

v With Data

v With Full Data

Report The amount of data

included in a report

message, where

Report specifies no

data, With Data

specifies the first 100

bytes, and With Full

Data specifies all

data.

Report Type

Exception

v Y

v N

N When yes, Exception

reports are required.

Report Type COA v Y

v N

N When yes, Confirm

on Arrival reports are

required.

Report Type COD v Y

v N

N When yes, Confirm

on Delivery reports

are required.

Report Type Expiry v Y

v N

N When yes, Expiry

reports are required.

 Table 33. Receive attributes

Attribute Values Default Comments

Wait Interval v 0-999999999

v Unlimited

Unlimited A period of time (in

milliseconds) that the

receive waits for a

message to be

available.

172 Application Development Guide for Federated Systems

Table 33. Receive attributes (continued)

Attribute Values Default Comments

Convert v Y

v N

Y When yes, the

message is code page

converted by the

message transport

when received.

Handle Poison

Message

v Y

v N

Y When yes, poison

message handling is

enabled.

Accept Truncated

Message

v Y

v N

Y When yes, truncated

messages are

accepted.

Open Shared v Y

v N

Y When yes, the queue

is opened as a shared

queue.

Note: A poison message is one for which the count of the number of times it has been

backed-out during a unit of work exceeds the maximum backout limit specified by the

underlying WebSphere MQ transport queue object. If poison message handling is enabled

during a receive request, the messaging interface handles it as follows: If a poison message

is successfully requeued to the backout-requeue queue (specified by the underlying

WebSphere MQ transport queue), the message is returned to the application with

completion code MQCC_WARNING and reason code MQRC_BACKOUT_LIMIT_ERR. If a

poison message requeue attempt (as described earlier) is unsuccessful, the message is

returned to the application with completion code MQCC_WARNING and reason code

MQRC_BACKOUT_REQUEUE_ERR. If a poison message is part of a message group (and

not the only message in the group), no attempt is made to requeue the message. The

message is returned to the application with completion code MQCC_WARNING and

reason code MQRC_GROUP_BACKOUT_LIMIT_ERR. In all cases, a warning is returned

and the message is returned to the application (even if it was successfully queued on the

backout-requeue queue). Also, the message does not disappear from the original queue

from where it is received, unless the application explicitly performs a commit

 Table 34. Subscribe attributes

Option Values Default Comments

Subscribe Locally v Y

v N

N When yes, the

subscriber is sent

publications that

were published with

the Publish Locally

option, at the local

broker

New Publications

Only

v Y

v N

N When yes, the

subscriber is not sent

existing retained

publications when it

registers.

Publish On Request

Only

v Y

v N

N When yes, the

subscriber is not sent

retained publications,

unless it requests

them by using

Request Update.

Chapter 8. WebSphere MQ and DB2 User Defined Functions 173

Table 34. Subscribe attributes (continued)

Option Values Default Comments

Inform If Retained v Y

v N

Y When yes, the broker

informs the

subscriber if a

publication is

retained.

Unsubscribe All v Y

v N

N When yes, all topics

for this subscriber are

to be deregistered.

Anonymous

Registration

v Y

v N

N When yes, the

subscriber registers

anonymously.

Use Correl Id As Id v Y

v N

N When yes, the Correl

Id is used by the

broker as part of the

subscriber’s identity.

 Table 35. Publish attributes

Option Values Default Comments

Retain v Y

v N

N When yes, the

publication is

retained by the

broker.

Publish To Others

Only

v Y

v N

N When yes, the

publication is not

sent to the publisher

if it has subscribed to

the same topic (used

for conference-type

applications).

Suppress Registration v Y

v N

Y When yes, implicit

registration of the

publisher is

suppressed. (This

attribute is ignored

for WebSphere MQ

Integrator Version 2.)

Publish Locally v Y

v N

N When yes, the

publication is only

sent to subscribers

that are local to the

broker.

Accept Direct

Requests

v Y

v N

N When yes, the

publisher should

accept direct requests

from subscribers.

Anonymous

Registration

v Y

v N

N When yes, the

publisher registers

anonymously.

Use Correl Id As Id v Y

v N

N When yes, the Correl

Id is used by the

broker as part of the

publisher’s identity.

174 Application Development Guide for Federated Systems

Migrating MQ user defined functions from the

repository-based configuration to the table-based

configuration

If you deployed MQ user defined functions with the application messaging

interface from a release earlier than Version 9, you must convert the configuration

to the DB2 table structures.

About this task

The WebSphere MQ user defined functions that are used in WebSphere Federation

Server in Version 9 and later rely on a DB2 table structure for the messaging

configuration. You must convert your existing configuration to the table-based

structures.

Procedure

To migrate from a repository-based configuration to a table-based configuration:

1. Connect to the database. For example, if you are working in the SAMPLE

database, issue the following command:

db2 connect to sample

2. Establish the configuration tables with default entries by using the following

command:

db2 -tvf amtsetup.sql

3. Verify the values in the tables by opening the WebSphere Version 5 AMI

Administration GUI tool, available on Windows, to view the current entries in

the application messaging interface repository file amt.xml. You can enter the

relevant fields from the Administration GUI tool as column or field values in

the tables. Ignore the fields or attributes that are not support in MQ user

defined functions.

4. Insert rows into the four MQ configuration tables that are based on the current

repository-based configuration in the files amt.xml and amthost.xml.

a. Insert rows in the MQHOST table from the amthost.xml file that

corresponds to the connection name and queue manager name.

b. Insert rows in the MQPolicy, MQService, and MQPubSub tables from the

values in the amt.xml file.
v Each entry in the Service Points category in the amt.xml file is mapped to a

row in the MQService table.

v Each entry in the Policies category in the amt.xml file is mapped to a row in

the MQPolicy table.

v Each entry in the Subscribers or the Publishers category in the amt.xml file is

mapped to a row in the MQPubSub table. A Subscriber flag (S) or a

Publisher flag (P) indicates the type of service point.

Examples of MQPUBLISH and MQSUBSCRIBE

If you need more control over which services can receive any particular message,

then you need to use the publish and subscribe functions.

An example of simple data publication is when one application notifies other

applications about events of interest. The application does this by sending a

Chapter 8. WebSphere MQ and DB2 User Defined Functions 175

message to a queue that is monitored by another application. The contents of the

message might be either a user-defined string, composed from database columns,

or a string-valued function call, or any valid expression that yields a string of the

correct type.

Many subscribers can register to receive messages from multiple publishers. You

can specify a topic that you can associate with your message. For example, a DB2

application can publish a message to the service point Weather. The message is

Sleet, and the topic is Austin.

values DB2MQ1C.MQPublish (’Weather Bulletins’,’Sleet’,’Austin’)

This notifies the interested subscribers that the weather in Austin is sleet.

Subscribers register an interest in receiving this kind of information with the

following statement:

values DB2MQ1C.MQSUBSCRIBE(’aSubscriber’, ’Austin’)

When the subscriber is no longer interested in subscribing to a particular topic,

that subscriber must explicitly unsubscribe by using a statement such as:

values DB2MQ1C.MQUNSUBSCRIBE(’aSubscriber’,’Austin’)

DB2 WebSphere MQ functions as part of the DB2 transaction

You can use DB2 MQ UDFs as part of the DB2 unit of work or transaction in many

kinds of DB2 operations.

Multiple connections

Multiple connections describe a scenario where two users connect to the same

database. Both of the users execute the DB2 MQ user defined functions. One

connection, or user, sends a message. The other connection, or user, receives a

message. The second connection does not see the message of the first connection

before the first connection commits. The second connection sees the messages of

the first connection after the commit. If the first connection issues a roll back, the

second connection does not see the message.

 Table 36. Two users connecting to the same database

Connection 1 Connection 2

db2 +c // Turn auto commit off No action

values db2mq1c.mqsend (“test message”) No action

 //The connection can not

//see the

//message yet:

values db2mq1c.mqreceive();

commit; No action

 No action //Now the connection

//can see the message:

values db2mq1c.mqreceive();

Triggers

DB2 MQ user defined functions can be part of a single or a multiple statement

BEFORE or AFTER trigger.

176 Application Development Guide for Federated Systems

create table EMPLOYEE

 (NAME VARCHAR(30), LASTNAME VARCHAR(30) NOT NULL PRIMARY KEY);

create trigger AFTER_TEST

 after insert on EMPLOYEE

 referencing NEW as NEWEMP

 for each row mode DB2SQL

 VALUES db2mq.mqsend(newemp.lastname);

insert into EMPLOYEE values (’MORGAN’, ’TONG’);

create trigger BEFORE_TEST

 no cascade before update of NAME on EMPLOYEE

 referencing NEW as NEWNAME OLD as OLDNAME

 for each row mode db2sql

 values db2mq.mqsend (oldname.lastname);

update EMPLOYEE set NAME = ’RAY’;

Examples of statements that cannot use DB2 MQ functions

You can integrate the messaging techniques with database operations on most DB2

SQL statements. If a DB2 MQ function results in an error, DB2 automatically rolls

the transaction back. Here are some examples of statements that cannot use DB2

MQ functions:

v If a user issues an application savepoint

v If a user tries to use the DB2 MQ user defined functions from within an atomic

compound SQL statement

WebSphere MQ functions within DB2

WebSphere® MQ and DB2® message operations combine database operations in a

single unit of work as an atomic transaction.

The most basic form of messaging with the DB2 MQ functions occurs when all

database applications connect to the same DB2 server. Clients can be local to the

database server or distributed in a network environment.

In a simple scenario, client A invokes the MQSEND function to send a user-defined

string to the location that is defined by the default service. DB2 runs the

WebSphere MQ functions that perform this operation on the database server. At

some later time, client B invokes the MQRECEIVE function. This removes the

message at the head of the queue that is defined by the default service. The

function then returns it to the client. DB2 runs the WebSphere MQ functions that

perform this operation on the database server.

Simple messaging

Database clients can use simple messaging in the following ways:

Data collection

The application receives information in the form of messages from one or

more sources. An information source can be any application. The

application receives the data from queues and stores the data in database

tables for additional processing.

Workload distribution

The application posts work requests to a queue that is shared by multiple

instances of the same application. When an application instance is ready to

Chapter 8. WebSphere MQ and DB2 User Defined Functions 177

perform some work, it receives a message that contains a work request

from the head of the queue. Multiple instances of the application can share

the workload that is represented by a single queue of pooled requests.

Application signaling

In a situation where several processes collaborate, you can use messages to

coordinate their efforts. These messages might contain commands or

requests to perform work. For more information about this technique, see

Application-to-application connectivity.

Messaging scenario

The following scenario extends basic messaging to incorporate remote messaging.

Assume that computer A sends a message to computer B.

1. The DB2 client executes an MQSEND function call and specifies a target service

that has been defined to be a remote queue on computer B.

2. The WebSphere MQ functions perform the work to send the message. The

WebSphere MQ server on computer A accepts the message. The server

guarantees that it will deliver the message to the destination. The service and

the current configuration of computer A defines the destination. The server

determines that the destination is a queue on computer B. The server then

attempts to deliver the message to the WebSphere MQ server on computer B,

retrying as needed.

3. The WebSphere MQ server on computer B accepts the message from the server

on computer A and places it in the destination queue on computer B.

4. WebSphere MQ client on computer B requests the message at the head of the

queue.

When you use MQSEND, you choose what data to send, where to send it, and

when to send it. This type of messaging is called send and forget. The sender only

sends a message, relying on WebSphere MQ to ensure that the message reaches its

destination.

Example that uses the DB2MQ schema

The example assumes that automatic commit is off. Therefore, a commit is needed.

Without the commit, you might still be holding locks until the end of the

transaction. The following CREATE TRIGGER statement sends a message that

consists of the first and last names that are inserted into table employees:

 CREATE TRIGGER T1

 AFTER INSERT ON employee REFERENCING new AS newemp

 FOR EACH ROW MODE DB2SQL

 VALUES DB2MQ.MQSEND(newemp.name)

Examples that use the DB2MQ1C schema

The following examples use the DB2MQ1C schema for single-phase commit with

the default service DB2.DEFAULT.SERVICE and the default policy

DB2.DEFAULT.POLICY. All of the examples assume that automatic commit is off.

Therefore, a commit is needed. Without the commit, you might still be holding

locks until the end of the transaction.

Assume that you have an EMPLOYEE table with VARCHAR columns

LASTNAME, FIRSTNAME, and DEPARTMENT. Also assume that automatic

commit is turned off. To send a message that contains this information for each

employee in DEPARTMENT 5LGA, issue the following SQL SELECT statement:

178 Application Development Guide for Federated Systems

SELECT DB2MQ1C.MQSEND (LASTNAME || ’ ’ || FIRSTNAME || ’ ’ || DEPARTMENT)

 FROM EMPLOYEE WHERE DEPARTMENT = ’5LGA’;

COMMIT;

Message content can be any combination of SQL statements, expressions, functions,

and user-specified data. Because this MQSEND function uses DB2 MQ

transactional user-defined functions with single-phase commit semantics, the

COMMIT statement ensures that the message is added to the WebSphere MQ

queue.

The DB2 WebSphere MQ functions allow an application to read or receive

messages. The difference between reading and receiving is that reading returns the

message at the head of a queue without removing it from the queue. Receiving

causes the message to be removed from the queue. A message that is retrieved by

using a receive operation can be retrieved only once. A message that is retrieved

by using a read operation allows the same message to be retrieved many times.

The following examples use the DB2MQ1C schema for single-phase commit with

the default service DB2.DEFAULT.SERVICE and the default policy

DB2.DEFAULT.POLICY.

The following SQL SELECT statement reads the message at the head of the queue

that is specified by the default service and policy. Assume that automatic commit is

turned off.

SELECT DB2MQ1C.MQREAD() FROM SYSIBM.SYSDUMMY1;

COMMIT;

You invoke the MQREAD function once because SYSIBM.SYSDUMMY1 has only

one row. The SELECT statement returns a VARCHAR(32000) string. If no messages

are available to be read, the result of the statement is a null value.

The following SQL SELECT statement materializes the contents of a queue as a

DB2 table:

SELECT T.* FROM TABLE(DB2MQ1C.MQREADALL()) T;

The result table T of the table function consists of all the messages in the queue

and the metadata about those messages. The queue is defined by the default

service. The first column of the result table is the message itself, and the remaining

columns contain the metadata. The SELECT statement returns both the messages

and the metadata.

To return only the messages, issue the following statement:

SELECT T.MSG FROM TABLE(DB2MQ1C.MQREADALL()) T;

The result table T of the table function consists of all the messages in the queue

and the metadata about those messages. The queue is defined by the default

service This SELECT statement returns only the messages.

The following SQL SELECT statement tries to send the message from the queue.

Assume that automatic commit is turned off.

 SELECT DB2MQ1C.MQSEND(name) FROM employees e;

 ROLLBACK;

The ROLLBACK statement means that the message is not actually sent because it

is in the same unit of work as the DB2 operation.

Chapter 8. WebSphere MQ and DB2 User Defined Functions 179

Application-to-application connectivity

You typically use application-to-application connectivity to solve the problem of

putting together a diverse set of application subsystems.

To facilitate application integration, WebSphere MQ® provides the means to

interconnect applications. One common scenario is called request-and-reply

communication.

The request-and-reply method enables one application to request the services of

another application. One way to do this is for the requester to send a message to

the service provider to request that some work be performed. When the provider

completes the work, the provider might decide to send results, or just a

confirmation of completion, back to the requester. Unless the requester waits for a

reply before continuing, WebSphere MQ must provide a way to associate the reply

with its request.

WebSphere MQ provides a correlation identifier to correlate messages in an

exchange between a requester and a provider. The requester marks a message with

a known correlation identifier. The provider marks its reply with the same

correlation identifier. To retrieve the associated reply, the requester provides that

correlation identifier when receiving messages from the queue. The provider

returns the first message with a matching correlation identifier to the requester.

Examples that use the DB2MQ1C schema

The following examples use the DB2MQ1C schema for single-phase commit.

The following SQL SELECT statement sends a message consisting of the string Msg

with corr id to the service, MYSERVICE. The application uses the policy

MYPOLICY with a correlation identifier CORRID1:

SELECT DB2MQ1C.MQSEND (’MYSERVICE’, ’MYPOLICY’, ’Msg with corr id’, ’CORRID1’)

 FROM SYSIBM.SYSDUMMY1;

COMMIT;

You invoke the MQSEND function once because SYSIBM.SYSDUMMY1 has only

one row. Because this MQSEND uses the DB2MQ1C schema, which is the

single-phase commit UDF, the message is part of the DB2® transaction.

The following SQL SELECT statement receives the first message that matches the

identifier CORRID1. The application receives the message from the queue that is

specified by the service MYSERVICE and uses the policy MYPOLICY:

SELECT DB2MQ1C.MQRECEIVE (’MYSERVICE’, ’MYPOLICY’, ’CORRID1’)

 FROM SYSIBM.SYSDUMMY1;

The SELECT statement returns a VARCHAR(32000) string. If no messages are

available with this correlation identifier, the result of the statement is a null value,

and the queue does not change.

You can use WebSphere MQ user-defined functions that are available in XML

Extender to pass only XML messages between DB2 and the various WebSphere

MQ implementations. First, you enable the database for XML extender. Then, you

enable the WebSphere MQ XML Extender functions in the following way:

enable_MQXML -n DATABASE -u USER -p PASSWORD

180 Application Development Guide for Federated Systems

WebSphere MQ XML functions

The following table is a brief description of some of the WebSphere MQ XML

functions. These functions have a DB2XML database schema. They are not under

MQ user defined functional transactional control. These MQ XML functions require

a separate enable_MQXML command before they are available.

 Table 37. WebSphere MQ XML functions

WebSphere MQ XML Functions Description

DB2XML.MQSendXML Send an XML message to the queue.

DB2XML.MQReadXML A nondestructive read of matching XML

message(s) from the queue.

DB2XML.MQReadAllXML A nondestructive read of all XML messages

from the queue

DB2XML.MQReadXMLCLOB A nondestructive read of matching XML

CLOB message(s) from the queue.

DB2XML.MQReadAllXMLCLOB A nondestructive read of all XML CLOB

messages from the queue

Tracing WebSphere MQ problems

The WebSphere MQ includes a trace facility to help identify what is happening

when you have a problem. It shows the paths taken when you run your messaging

interface program. This trace is in addition to the base DB2 trace that you use to

debug problems.

There are three environment variables that you set to control trace:

v DB2MQ_TRACE

v DB2MQ_TRACE_PATH

v DB2MQ_TRACE_LEVEL

If you have tracing switched on, it will slow down the running of your messaging

interface program, but it will not affect the performance of your WebSphere MQ

environment. When you no longer need a trace file, it is your responsibility to

delete it. You must stop your messaging interface program running to change the

status of the DB2MQ_TRACE variable. The messaging interface trace environment

variable is different than the trace environment variable used within the

WebSphere MQ range of products. Within the messaging interface, the trace

environment variable turns tracing on. If you set the variable to a string of

characters (any string of characters) tracing will remain switched on. It is not until

you set the variable to NULL that tracing is turned off.

Commands on Windows

SET DB2MQ_TRACE_PATH=drive:\directory

Sets the trace directory where the trace file will be written.

SET DB2MQ_TRACE_PATH=

Removes the DB2MQ_TRACE_PATH environment variable; the trace file is

written to the current working directory (when the messaging interface

was started).

SET DB2MQ_TRACE_PATH

Displays the current setting of the trace directory.

Chapter 8. WebSphere MQ and DB2 User Defined Functions 181

SET DB2MQ_TRACE_LEVEL=n

Sets the trace level, where n is an integer from 0 through 9. 0 represents

minimal tracing, and 9 represents a fully detailed trace. You can also suffix

the value with a + (plus) or - (minus) sign. When the plus sign is suffixed,

the trace includes all control block dump information and all informational

messages. When the minus sign is suffixed, the trace includes only the

entry and exit points in the trace, with no control block information or text

output to the trace file.

SET DB2MQ_TRACE_LEVEL=

Removes the DB2MQ_TRACE_LEVEL environment variable. The trace

level is set to its default value of 2.

SET DB2MQ_TRACE_LEVEL

Displays the current setting of the trace level.

SET DB2MQ_TRACE=xxxxxxxx

Sets tracing ON by putting one or more characters after the ‘=’ sign. For

example: SET DB2MQ_TRACE=yes SET DB2MQ_TRACE=no In both of

these examples, tracing will be set ON.

SET DB2MQ_TRACE=

Sets tracing OFF.

SET DB2MQ_TRACE

Displays the contents of the environment variable.

Example of a WebSphere MQ messaging trace

The trace file will have names in the format of DB2Mnnnn.TRC under the

directory specified in the DB2MQ_TRACE_PATH.

Trace for program ---- <<< DB2M trace >>> ---- started at Mon Feb 6 15:39:07 2006

@(!) <<< *** Code Level is DB2 mqint 2.0 *** >>>

! BuildDate Jan 31 2006

! Trace Level is 9

15:39:07.088

-->xmq_xxxInitialize

---->ObtainSystemCp

! About to go off to xmqGetCodeset

! back with

! ISO8859-1

! Code page is 819

<----ObtainSystemCp (rc = 0)

<--xmq_xxxInitialize (rc = 0)

-->amSessCreateX

---->amCheckAllBlanks()

<----amCheckAllBlanks() (rc = 0)

---->amCheckValidName()

<----amCheckValidName() (rc = 1)

! Session name is: DB2MQ_RCV_SESSION

---->amIdxTableAddEntry

------>amIdxTableCreate

! allocating 48, 8192

! amIdxTableCreate allocated structure 110139ff0

! amIdxTableCreate allocated array 11014edf0

<------amIdxTableCreate (rc = AM_ERR_OK)

------>amIdxTableLock

<------amIdxTableLock (rc = AM_ERR_OK)

------>amIdxTableUnlock

<------amIdxTableUnlock (rc = AM_ERR_OK)

! Added entry at index 0 to 110139ff0

<----amIdxTableAddEntry (rc = AM_ERR_OK)

---->amSesClearErrorCodes

182 Application Development Guide for Federated Systems

------>amIdxTableGetEntry

-------->amIdxTableLock

<--------amIdxTableLock (rc = AM_ERR_OK)

-------->amIdxTableUnlock

<--------amIdxTableUnlock (rc = AM_ERR_OK)

Chapter 8. WebSphere MQ and DB2 User Defined Functions 183

184 Application Development Guide for Federated Systems

Chapter 9. MQListener in WebSphere Federation Server

The WebSphere Federation Server provides an asynchronous listener, named

MQListener. MQListener is a framework for tasks that read from WebSphere® MQ

queues and call DB2 stored procedures with messages as they arrive.

MQListener combines messaging with database operations. You can configure the

MQListener daemon to listen to the WebSphere MQ message queues that you

specify in a configuration database. MQListener reads the messages that arrive

from the queue and then calls DB2 stored procedures with the messages as input

parameters. If the message requires a reply, MQListener creates a reply from the

output that is generated by the stored procedure. The message retrieval order is

fixed at the highest priority first, and then within the priority the first message in

is the first message served.

MQListener runs as a single multi-threaded process. Each thread or task establishes

a connection to its configured message queue for input. Each task also connects to

a DB2 database on which to run the stored procedure. The information about the

queue and the stored procedure is stored in a table in the configuration database.

The combination of the queue and the stored procedure is a task.

MQListener tasks are grouped together into named configurations. By default, the

configuration name is empty. If you do not specify the name of a configuration for

a task, MQListener uses the configuration with an empty name.

MQListener can integrate the message queue read and write operations with the

stored procedure into a single transaction. When you run transactional tasks a

message cannot be lost even if your computer fails after you read the message

from the queue, but before the stored procedure receives the message. By default,

only the call to the stored procedure is transactional. If you want to combine into

the same transaction the operations of removing the message from the queue and

calling the stored procedure, configure the WebSphere MQ environment as a

coordinator by using the –mqcoordinated parameter with the db2mqlsn command.

You must configure the pertinent queue manager to coordinate with the proper

resource according to WebSphere MQ guidelines. If you do not want to specify

transactional queue operations, the queue manager should not be configured as a

transaction manager. Do not run a nontransactional task with a queue manager

that is configured as a transaction coordinator.

Configuration

As part of the MQListener configuration, you specify the configuration user

(-configUser) and the run user (-dbUser). The configuration user and the run user

can be separate users with different access rights. The run user does not inherit the

privileges of the configuration user. In a normal MQListener scenario, a user runs

the MQListener application. The only right that the user who runs MQListener

requires is the ability to access WebSphere MQ functions, which generally means

being a member of the mqm group in Windows® and UNIX® operating systems.

The user who executes MQListener is typically the configuration user.

© Copyright IBM Corp. 2005, 2007 185

Stored procedure interface

The stored procedure interface for MQListener takes the incoming message as

input and returns the reply, which might be NULL, as output:

schema.proc(in inMsg inMsgType, out outMsg outMsgType)

The data type for inMsgType and the data type for outMsgType can be VARCHAR,

VARCHAR FOR BIT DATA, CLOB, or BLOB of any length. The input data type

and output data type can be different data types. The number of parameters of the

stored procedure is pre-defined, such that if there is one input parameter, there is

one output parameter.

Asynchronous messaging in Information Integration

With asynchronous messaging, the program that sends the message proceeds with

its processing after sending the message without waiting for a reply.

Programs can communicate with each other by sending data in messages rather

than by using constructs like synchronous remote procedure calls. If the program

needs information from the reply, the program suspends processing and waits for a

reply message. If the messaging programs use an intermediate queue that holds

messages, the requester program and the receiver program do not need to be

running at the same time. The requester program places a request message on a

queue and then exits. The receiver program retrieves the request from the queue

and processes the request.

Asynchronous operations require that the service provider is capable of accepting

requests from clients without notice. An asynchronous listener is a program that

monitors message transporters, such as WebSphere® MQ, and performs actions

based on the message type. An asynchronous listener can use WebSphere MQ to

receive all messages that are sent to an endpoint. An asynchronous listener can

also register a subscription with a publish or subscribe infrastructure to restrict the

messages that are received to messages that satisfy specified constraints.

The following examples show some common uses of asynchronous messaging:

Message accumulator

You can accumulate the messages that are sent asynchronously so that the

listener checks for messages and stores those messages automatically in a

database. This database, which acts as a message accumulator, can save all

messages for a particular endpoint, such as an audit trail. The

asynchronous listener can subscribe to a subset of messages, such as save

only high value stock trades. The message accumulator stores entire

messages. The message accumulator does not provide for selection,

transformation, or mapping of message contents to database structures.

The message accumulator also does not reply to messages.

Message event handler

The asynchronous event handler listens for messages and invokes the

appropriate handler, such as a stored procedure, for the message endpoint.

You can call any arbitrary stored procedure. The asynchronous listener lets

you select, map, or reformat message contents for insertion into one or

more database structures.

186 Application Development Guide for Federated Systems

Benefits of asynchronous message

The following lists some of the benefits of asynchronous messaging database

interactions:

v The client and database do not need to be available at the same time. If the

client is available intermittently, or if the client fails between the time that the

request is issued and the response is sent, it is still possible for the client to

receive the reply. Or, if the client is on a mobile computer and becomes

disconnected from the database, and if a response is sent, the client can still

receive the reply.

v The content of the messages in the database contain information about when to

process particular requests. The messages in the database use priorities and the

request contents to determine how to schedule the requests.

v An asynchronous message listener can delegate a request to a different node. It

can forward the request to a second computer to complete the processing. When

the request is complete, the second computer returns a response directly to the

endpoint that is specified in the message.

v An asynchronous listener can respond to a message from a supplied client or

from a user-defined application. The number of environments that can act as a

database client is greatly expanded. Clients such as factory automation

equipment, pervasive devices, or embedded controllers can communicate with

DB2® either directly through WebSphere MQ or through some gateway that

supports WebSphere MQ.

Configuring and running MQListener

Use this procedure to configure the environment for MQListener and to develop a

simple application that receives a message, inserts the message in a table, and

creates a simple response message.

Procedure

To configure and run MQListener:

Configuring MQListener to run in the DB2 environment

Configure your database environment so that your applications can use messaging

with database operations.

Before you begin

Create a database for the MQListener configuration and a database for the stored

procedures that you call when a message arrives (if valid databases are not already

available). You can use the same database for the configuration and the stored

procedures.

The configuration users must have the following privileges and authorizations:

v Read and write access to the DB2 table SYSMQL.LISTENERS. MQListener run

users do not need access to SYSMQL.LISTENERS

v Authority to run the configuration package mqlCOnfig.bnd

The run users must have the authority to run the mqlRun.bnd package.

Procedure

Chapter 9. MQListener in WebSphere Federation Server 187

To configure MQListener to run with federated databases:

1. Issue the following command to connect. Substitute the appropriate values for

your database environment:

db2 connect to ConfigDB user DBAdmin using DBAdminPwd

2. Run the MQLInstall.sql script, which creates a table that stores the MQListener

configuration. The script is in the ...\sqllib\bin directory in a Windows

environment:

db2 -td; -f MQLInstall.sql

3. Issue the following commands to grant access to the configuration user.

Substitute the appropriate values for your database environment:

db2 grant all privileges on table SYSMQL.LISTENERS to ConfigUser

db2 connect reset

4. Bind the MQListener packages and grant access to the packages. You must bind

the MQLConfig package in the configuration database. Issue the following

commands.

db2 connect to ConfigDB user DBAdmin using DBAdminPwd

db2 bind mqlConfig.bnd

db2 grant execute on package mqlConfig.bnd to ConfigUser

db2 connect reset

5. Bind the mqlRun.bnd package in each of the run databases. Issue the following

commands for each run database and each run user in that database:

db2 connect to RunDB user DBAdmin using DBAdminPwd

db2 bind mqlRun.bnd

db2 grant execute on package mqlRun to RunUser

db2 connect reset

Configuring WebSphere MQ for MQListener

You can run a simple MQListener application with a simple WebSphere MQ

configuration. More complex applications might need a more complex

configuration. Configure at least two kinds of WebSphere MQ entities: the queue

manager and some local queues. Configure these entities for use in such instances

as transaction management, deadletter queue, backout requeue and backout retry

threshold.

Before you begin

Issue the WebSphere MQ control commands while in the mqm group. The mqm

group is used by the WebSphere MQ administrators and for internal MQ

programs. All members of this group have access to all resources.

Procedure

To configure WebSphere MQ for a simple MQListener application:

1. Create a queue manager.

crtmqm TransQM

2. Start the queue manager.

strmqm TransQM

3. Optional: Configure the queue manager to coordinate transactions with DB2.

a. Provide the name of a shared library, which is called a switch load file, that

WebSphere MQ can use to find the DB2 X/Open resource manager

functions, and an extended architecture open string (xa_open) that is specific

to DB2.

188 Application Development Guide for Federated Systems

b. Create the MQStart routine in the switch load file by compiling a small C

program that returns the DB2 global variable db2xa_switch. See the

WebSphere MQ: System Administration Guide for specific information on how

to create the switch load file. MQStart returns a structure of pointers to the

functions that implement the X/Open resource manager functions in DB2.

The following example shows the required format for the extended

architecture open string, with appropriate values that are substituted for

MQListener configuration parameters:

DB=RunDB, UID=RunUser, PWD=RunUserPwd, TPM=MQ, TOC=P

If you use TPM=MQ in the extended architecture open string as in this

example, you do not need to set the DB2 TP_MON_NAME instance

variable. WebSphere MQ obtains the parameters that it needs based on the

operating system environment. On Windows operating systems the

parameters are in the Windows registry. You can specify the parameters by

using the WebSphere MQ MQServices. On UNIX operating systems the

parameters are in the queue manager configuration file. Use a valid text

editor for your environment to specify the parameters to use.
4. Create your local queues by using the WebSphere MQ script facility.

a. Create a file that contains the following commands (for this example the file

is mqconfig.mqs):

define qlocal(’DLQ’)

alter qmgr deadq(’DLQ’)

define qlocal(’Backout’)

define qlocal(’Admin’)

define qlocal(’In’) boqname(’Backout’) bothresh(3)

define qlocal(’SYSTEM.SAMPLE.REPLY’)

b. Redirect the mqconfig.mqs file into the script interpreter by issuing the

following command:

runmqsc TransQM < mqconfig.mqs

If you configure the queue manager to coordinate transactions with DB2, then

MQListener applications can remove a message and call a stored procedure in a

single transaction.

Configuring MQListener

Use the MQListener command, db2mqlsn, to configure MQListener.

Restrictions

v Use the same queue manager for the request queue and the reply queue.

v On Windows systems, each thread can connect to one queue manager.

v On UNIX systems, each process can connect to one queue manager. If you

specify different queue managers within the same MQListener configuration on

a UNIX system, you receive a run-time error from WebSphere MQ.

v MQListener does not support logical messages that are composed of multiple

physical messages. MQListener processes physical messages independently.

About this task

Issue the command db2mqlsn from a command line in any directory. On a

Windows system, issue the command in a DB2 command line processor window to

insure proper message display. The add parameter with the db2mqlsn command

updates a row in the DB2 table SYSMQL.LISTENERS. .

Chapter 9. MQListener in WebSphere Federation Server 189

Procedure

To specify MQListener configuration:

1. Add an MQListener configuration with the following command:

db2mqlsn add

 -configDB ConfigDB

 -config aConfiguration

 -configUser ConfigUser

 -configPwd ConfigUserPwd

 -queueManager TransQM

 -inputQueue In

 -procSchema RunUser

 -procName aProc

 -dbName RunDB

 -dbUser RunUser

 -dbPwd RunUserPwd

 -waitMillis waitInMilliSeconds

 -mqCoordinated

2. Display all of the tasks in a configuration with the following command:

db2mqlsn show

 -configDB ConfigDB

 -config aConfiguration

 -configUser ConfigUser

 -configPwd ConfigUserPwd

3. Remove the messaging tasks with the following command:

db2mqlsn remove

 -configDB ConfigDB

 -config aConfiguration

 -configUser ConfigUser

 -configPwd ConfigUserPwd

 -queueManager TransQM

 -inputQueue In

4. Get help with the command and the valid parameters with the following

command:

db2mqlsn help

5. Get help for a particular parameter with the following command by using a

specific parameter:

db2mqlsn help <command>

Creating a stored procedure to use with MQListener

MQListener uses the stored procedure, aProc, to store a message in a table. The

stored procedure returns the string OK if the message is successfully inserted into

the table.

Before you begin

The stored procedure requires a C compiler.

Restrictions

About this task

The run database contains the stored procedure that is run when a message

arrives. The run user is the user in whose name MQListener connects to the run

database to run the stored procedure. Use the following parameters with the

db2mqlsn add command to define the run database and the run user:

v -dbName

190 Application Development Guide for Federated Systems

v -dbUser

The run user must be able to connect to the run database and run the stored

procedure. The run user does not need to be the owner of the stored procedure.

The run user also does not need access to the MQListener configuration.

Procedure

To create DB2 database objects that you can use with MQListener applications:

1. Create a simple table as the run user (you can use the DB2 command line

processor):

CREATE TABLE aTable (val VARCHAR(25) CHECK (val NOT LIKE ’fail%’))

2. Create the following stored procedure:

CREATE PROCEDURE aProc (IN pin VARCHAR(25), OUT pout VARCHAR(2))

BEGIN

 INSERT INTO aTable VALUES(pin);

 SET pout = ’OK’;

END

The table contains a check constraint so that messages that start with the characters

fail cannot be inserted into the table. The check constraint is used to demonstrate

the behavior of MQListener when the stored procedure fails.

MQListener examples

The examples in this topic show a simple MQListener application. The application

receives a message, inserts the message in a table, and generates a simple response

message.

To simulate a processing failure, the application includes a check constraint on the

table that contains the message. The constraint prevents any string that begins with

the characters fail from being inserted into the table. If you attempt to insert a

message that violates the check constraint, the example application returns an error

message and requeues the failing message to the backout queue.

Issue MQListener with all tasks configured

To run MQListener with all of the tasks specified in a configuration, issue the

following command:

db2mqlsn run

 -configDB ConfigDB

 -config aConfiguration

 -configUser ConfigUser

 -configPwd ConfigUserPwd

 -adminQueue Admin

 -adminQMgr TransQM

Using MQListener to send simple messages

The following examples show how to use MQListener to send a simple message

and then inspect the results of the message in the WebSphere MQ queue manager

and the database. The examples include queries to determine if the input queue

contains a message, or if a record is placed in the table by the stored procedure.

Many tools support these operations, including the DB2 command line processor,

DB2 Command Center, some WebSphere MQ command line utilities, sample

programs, the MQ Explorer, and the MQ API exerciser. Consider using DB2 and

WebSphere MQ tools for more complex applications.

Chapter 9. MQListener in WebSphere Federation Server 191

MQListener example 1: Running a simple application

1. Start with a clean database table:

db2 delete from aTable

2. Send a datagram to the input queue:

a. Place the string a sample message in a file named sampleMsg1.txt

b. Use the WebSphere MQ sample program amqsput to put the message on

the queue:

amqsput In TransQM < sampleMsg1.txt

3. Query the table to verify that the sample message is inserted:

db2 select * from aTable

4. Display the number of messages that remain on the input queue to verify that

the message has been removed:

a. Place the following command in the file checkIn.mqs:

display queue(’In’) curdepth

b. Redirect the command into the script interpreter:

runmqsc TransQM < checkIn.mqs

MQListener example 2: Sending requests to the input queue and

inspecting the reply

The following example statements send a request to the input queue and inspect

the reply:

1. Start with a clean database table:

db2 delete from aTable

2. Send a request to the input queue:

a. Place the string another sample message in a file named sampleMsg2.txt

b. Use the WebSphere MQ sample program amqsreq to send the request to the

input queue:

amqsreq In TransQM < sampleMsg2.txt

The amqsreq program sets the reply-to queue in the request to

SYSTEM.SAMPLE.REPLY
3. Query the table to verify that the sample message is inserted:

db2 select * from aTable

4. Display the number of messages that remain on the input queue to verify that

the message is removed.

display queue(’In’) curdepth

5. Look at the SYSTEM.SAMPLE.REPLY queue for the reply by using the

WebSphere MQ sample program amqsget. Verify that the OK string is

generated by the stored procedure:

amqsget SYSTEM.SAMPLE.REPLY TransQM

MQListener example 3: Testing an unsuccessful insert operation

If you send a message that starts with the string fail, the constraint in the table

definition is violated, and the stored procedure fails.

1. Start with a clean database table:

db2 delete from aTable

2. Send a request to the input queue:

a. Place the string failing sample message in a file named sampleMsg3.txt

192 Application Development Guide for Federated Systems

b. Use the WebSphere MQ sample program amqsreq to send the request to the

input queue:

amqsreq In TransQM < sampleMsg3.txt

The amqsreq program sets the reply-to queue in the request to

SYSTEM.SAMPLE.REPLY
3. Query the table to verify that the sample message is not inserted:

db2 select * from aTable

4. Display the number of messages that remain on the input queue to verify that

the message is removed:

display queue(’In’) curdepth

5. Read from the SYSTEM.SAMPLE.REPLY queue and find an exception report

rather than an OK reply:

amqsget SYSTEM.SAMPLE.REPLY TransQM

6. Read from the Backout queue and find the original message:

amqsget Backout TransQM

Parameters used in MQListener configuration

This topic describes the parameters that you can use in the MQListener

configuration.

ConfigDB

The configuration database, which can be any valid DB2 database, contains

an MQListener configuration table. The configuration table contains

information about the queues to which MQListener should listen and the

stored procedures MQListener should call.

ConfigUser

The user ID in whose name you access the configuration database. The

configuration user does not need to be a database administrator. You can

specify the configuration user and password in the MQListener command.

If you do not specify a configuration user and password, and your

database installation supports implicit connections, by default the

configuration user is the user under whose account the MQListener is

running.

ConfigUserPwd

The password that is used with the configuration user ID.

RunDB

The run database is the database that contains the stored procedures that

are run when a message arrives. The stored procedures can be in different

databases from the configuration database.

RunUser

The user in whose name you access the run database to run the stored

procedure. The run user does not need any privilege except the ability to

connect to the run database and run the stored procedure.

RunUserPwd

The password that is associated with the run user.

WebSphere MQ queues used in MQListener

This topic describes the typical WebSphere MQ queues that a simple MQListener

application uses.

Chapter 9. MQListener in WebSphere Federation Server 193

Deadletter queue

The deadletter queue (DLQ) in WebSphere MQ holds messages that cannot

be processed. MQListener uses this queue to hold replies that cannot be

delivered, for example, because the queue to which the replies should be

sent is full. A deadletter queue is useful in any MQ installation especially

for recovering messages that are not sent.

Backout queue

For MQListener tasks in which WebSphere MQ is the transaction

coordinator, the Backout queue serves a similar purpose to the deadletter

queue. MQListener places the original request in the Backout queue after

the request is rolled back a specified number of times (called the backout

threshold).

Administration queue

The administration queue is used for routing control messages such as

shutdown and restart to MQListener. If you do not supply an administration

queue, then the only way to shut down MQListener is to issue a kill

command.

Application input and output queues

The application uses input queues and output queues. The application

receives messages from the input queue. The application sends replies and

exceptions to the output queue. For example, SYSTEM.SAMPLE.REPLY is

used in the WebSphere MQ sample program amqsreq.

194 Application Development Guide for Federated Systems

Chapter 10. Developing applications that use federation

By using the technologies of a federated database environment, you can create

applications that solve the problems of data scalability, data accessibility, and data

currency. The scenarios describe companies that are composites of several real

companies and use actual customer experiences. All of the names in the scenarios

are fictitious.

Developing federated application with Java technology

Web-enabled applications that are developed in a database environment can use

several components of the Java™ 2 Enterprise Edition (J2EE) server environment.

Some of the J2EE components include support for enterprise beans, connections to

the database manager, and access to the database manager, which includes support

for Java Database Connectivity code and Java transaction application programming

interfaces.

Advantages of enterprise beans in a federated system

By using enterprise beans and federated system objects, programmers can perform

database operations and access multiple data sources. Programmers can create

applications that integrate disparate data through Enterprise JavaBeans technology.

Accessing disparate data sources

Without a federated system, accessing disparate data sources requires multiple

steps:

1. You must connect to each data source individually.

2. You must extract the necessary data by using different native application

programming interfaces.

3. You must filter, sort, and consolidate the data manually.

A federated system is a type of distributed database management system that

makes it possible for you to send distributed requests to multiple data sources by

issuing a single SQL statement. With a federated system, you simply query the

nicknames of the data sources by using SELECT, INSERT, UPDATE, and DELETE

statements.

In a federated system, you have transparent access to data that spans multiple

heterogeneous sources. Federated systems complement the built-in database

support that is provided by Web application servers and enterprise beans.

Federated views

By using the DB2 view objects, database administrators can create views of data

that span multiple tables from different data sources. You begin the process of

building a view in a federated system by creating nicknames for the remote data

objects. Then you issue an SQL statement that creates a view that joins the

nicknames. Even though the views that join multiple data sources are read-only

views, you can map container-managed persistence entity beans to these read-only

views. The container-managed persistence entity beans are read-only beans.

© Copyright IBM Corp. 2005, 2007 195

Materialized query tables

You can incorporate materialized query tables into your application to improve

performance. With materialized query tables, you can precompute whole or parts

of each query and then use the computed results to answer future queries.

Materialized query tables help to avoid redundant scanning, aggregating, and

joining of data

With materialized query tables, you can process queries when the remote data

source is not available (such as when the network is not available). A materialized

query table on a remote table is perceived as a cache for that table, which enhances

system availability.

A materialized query table can increase the scalability of the overall system by

reducing the work on the primary database. You can use several local databases to

perform the work. Each database contains a copy of a subset of the frequently used

primary data.

By using materialized query tables, you can avoid some connections to remote

systems for some queries. The overall system throughput can potentially increase,

and your total response time can decrease.

Enterprise beans in a federated system

Programmers can use enterprise beans and federated system objects to perform

database operations or transactional work and access data that spans multiple

heterogeneous sources. Federated systems support automated development and

deployment of a single container-managed persistence entity bean whose attributes

map to data from multiple resources.

Enterprise beans are Java components that run on a Web server. You can create

container-managed persistence entity beans and map them to nicknames that you

create with federated systems. Federated objects such as wrappers, nicknames, and

views extend the usefulness of entity beans to integrate disparate data through

Enterprise JavaBean architecture.

The container-managed persistence entity bean can access data that is located in

relational databases. The read-only container-managed persistence entity bean can

access data that is located in nonrelational databases.

Enterprise JavaBean architecture

Enterprise bean components are part of the Enterprise JavaBean architecture. An

enterprise bean implements business logic. For example, the relational and

nonrelational tables in Figure 56 on page 197 describe a customer order scheduling

system that is implemented by entity beans. The enterprise bean components run

in an enterprise JavaBean container. The container runs on an enterprise JavaBean

server. The enterprise JavaBean container provides services such as transaction and

resource management, persistence, and security to the enterprise bean components.

The enterprise JavaBean container controls the details of database manipulation,

such as managing access to a target data source.

196 Application Development Guide for Federated Systems

Entity beans and session beans

Two types of enterprise beans are used in a federated system:

Session beans

Usually associated with a single client and is usually not persistent. The

session bean acts as a single client that performs some actions on the

server. The session bean does not represent or update existing database

contents.

Entity beans

Represents information that is stored persistently in a database. Entity

beans are associated with database transactions. Entity beans can provide

Federated databases Enterprise JavaBean container

Name

Order number

1234 555

555 12/10/1999

9876 913

Customer ID

Customer ID

Name Order
number

Cust.
ID

Order date

12/01/1999John Doe 1234 555

Order date

Customer number

John Doe John Doe Maria Cortez

555

1234
555

555
12/01/1999

John Doe
555
1234
12/01/1999

9876
113

913

Customer

Order_date

Customer_Order_View

Customer_Order_View

Orders Orders

Customer

555

913Maria Cortez

DB2
Client Entity beans

Customer:

Oracle: Orders

XML flat file:
(created as a nickname from an
XML flat file data source)

Order_date

Figure 56. Container-managed entity beans mapped to federated objects

Chapter 10. Developing applications that use federation 197

data access to multiple users. An entity bean might represent an

underlying database row or the result of a SELECT statement in a single

row.

Figure 56 on page 197 shows four container-managed persistence entity beans that

map to federated database objects:

 Customer is a DB2 table.

 Orders is an Oracle table that is accessed with the nickname Orders.

 Order_date is an XML flat file that is accessed with the nickname Order_date.

 Cust_Order_View is a view that is created by joining the Customer table, the

Orders table, and the Order_date table.

The federated server translates the database access to data access requests that are

appropriate to the data sources. When you deploy an enterprise bean, the bean

resides in containers that provide services such as support for persistence. The

entity bean automatically generates the code that implements persistence when

you deploy the enterprise bean. By contrast, when you build session enterprise

beans that access persistent data, you must write your own Java database

connectivity statements to establish database connections and issue SQL

statements.

A container-managed persistence entity bean defers all interaction with the

database to the enterprise JavaBean container. Typically, the enterprise bean reads

the data from the database and places the data into the fields in the

container-managed persistence entity bean. You can reference or update (when the

data is part of a relational database) the data in the entity bean. When a

transaction ends, the Enterprise JavaBean container accesses the data in the entity

bean and updates the underlying row in the relational table.

Creating and deploying a container-managed persistence

bean

You can create container-managed persistence entity beans that map to federated

systems nicknames.

Before you begin

v WebSphere Studio Version 5 or later or Rational Application Developer is

required.

v You must register the objects that the bean accesses in your federated system.

About this task

A single container-managed persistence entity bean can span multiple data sources.

The entity bean integrates disparate data through standard enterprise JavaBean

technology. When you define a container-managed persistence entity bean, you use

a deployment descriptor file to control the data source that contains the persistent

data and any access restrictions.

Procedure

To create and deploy a container-managed persistence entity bean by using the

WebSphere Studio:

1. From the Java 2 Enterprise Edition (J2EE) perspective in WebSphere Studio,

create an EJB project for the entity bean.

198 Application Development Guide for Federated Systems

2. Create the container-managed persistence entity bean:

a. Name the container-managed persistence entity bean the same name as the

nickname that you defined for the data source. For example, Figure 56 on

page 197 shows a mapping between the Orders nickname and the Orders

entity bean.

b. Add attributes that correspond to each of the column names in the

nickname. Specify the data type for each column that corresponds to the

data type in the column of the nickname. Designate one of the attributes as

the key field, which must map to the primary key column of the nickname.
3. Generate the DDL for your bean by using the enterprise JavaBean data

modeling window:

a. Select the entity bean that you created.

b. Right-click the bean and click Generate → EJB to RDB mapping.

c. Click Top-down modeling.

d. Click Next.

e. Ensure that you set the database name and the schema names properly. The

database name must map to the federated database that is known to your

DB2 client. The schema name must map to the authorized federated

database user.

f. Clear the Generate DDL check box.

g. Click Finish.
4. Verify that the mapping between the entity bean and the database completed

successfully:

a. Select the entity bean module.

b. Right-click the bean and click Open With → Mapping Editor.

c. Correct any errors on the Tasks window.
5. Bind the entity bean to the data source that you created for the federated

database:

a. Select the entity bean.

b. Right-click the bean and click Open With → Deployment Descriptor Editor.

c. On the Overview page, scroll to WebSphere Bindings. For JNDI-CMP

Factory Bindings, specify a valid JNDI name and container authorization

type.

d. Save your modifications and close the window.
6. Generate the code to deploy the entity bean:

a. Select the entity bean.

b. Right-click the bean and click Generate Deploy Code.

After you package and deploy the entity bean, you can change the properties of

the bean by changing the deployment descriptors of the bean. You can assemble

your bean with other beans to create applications. Or, you can export your bean

from your current development environment and deploy it on another Web

application server.

Chapter 10. Developing applications that use federation 199

Examples of federated applications

Cottonwood Distributors, Inc. is an existing, well-established distribution company.

The company acts as a broker for commodity parts. The company has been in

business for many years as a DB2 customer. Cottonwood Distributors programmers

can use the federated applications to get customer bid requests and to update

quotes from suppliers.

Customer bid requests

The federated application provides the customer bid requests and status of bids

that is required of the new merged Cottonwood Distributors enterprise.

The customer bid requests are sent through the Web services. The actual request is

a message that is routed to a WebSphere message queue. Cottonwood Distributors

has an application on that message queue that listens for activity so that the

programs can retrieve database requests from the queue as the requests enter the

queue. This listener application invokes a set of actions to process the requests. The

listener balances the load that is introduced by the number of bid requests that

enter the queue and processes the customer bid requests with the following steps:

v The customer bid Web services request writes a message to the queue.

v The listener application invokes a DB2 function to extract the order information

from the request.

v The application runs a read-only query to obtain a quote for the requested part.

v The application inserts a record into the local table to record the order.

The following graphic displays the flow for the customer orders:

200 Application Development Guide for Federated Systems

Supplier quote requests

Cottonwood Distributors processes the supplier quote updates in a series of steps

that are similar to the customer bid requests. However, the supplier quotes query

is not read-only because the program needs to update the quotes. The listener

application allows Cottonwood Distributors to inspect the request before allowing

the update to commit.

Here are the specific steps for the supplier quote requests:

v The supplier quote request writes a message to the queue.

v Based on the format of the message, the listener application invokes a DB2

function to extract the request to update a quote for a part.

v The applicaton reviews the previously lowest quote from that supplier for that

part. If the new quote is lower or if the quote is for a part not previously

supplied by that supplier, the application updates the database. If the new quote

is higher, Cottonwood Distributors might not make the update. Instead, the

Cottonwood application marks the quotes as something that the Cottonwood

marketing team should review later or to negotiate with the supplier.

WebSphere Application Server Customer Order Request

Web Services (NewDadx.dadx)
values db2mq.mqsend
('CDI, 'CDI', cast
(:msg as varchar(4000), 'CDI_IN_MSG')

Select
VARCHAR(DB2MQGETCOL('T.MSG,',',1),1),
INT(DB2MQ.GETCOL(T.MSG,',',2)),
INT(DB2MQ.GETCOL(T.MSG,',',3)),
INT(DB2MQ.GETCOL(T.MSG,',',4)),
DOUBLE(DB2MQ.GETCOL(T.MSG,',',5)),
FROM TABLE
DB2MQ.MQRECEIVALL('CDI','CDI',CDI_IN_MSG',1))AS T

Select c_name
from db2_customer
where c_custkey=:mqMsgKey

INSERT into request_bid values (:mqMsgKey, : mqMsgPart,
(SELECT MIN(ps_supplycost)* 1.45 FROM partsupp_fed
WHERE ps_parkey = :mqMsgPart

Web Client
Message Formatter
Servlet

RunListener.java.Servlet

MQ Queue Informix

Oracle

DB2

WebSphere Federation Server
Federated Server

1,1301,100,1000,0
1,540,935,487,0

Request_BID

Figure 57. Cottonwood customer order requests

Chapter 10. Developing applications that use federation 201

The following graphic displays the complete flow for the supplier price updates:

WebSphere Application Server Update Supplier Price

Web Services (NewDadx.dadx)
values db2mq.mqsend
('CDI, 'CDI', cast
(:msg as varchar(4000), 'CDI_IN_MSG')

Select
VARCHAR(DB2MQGETCOL('T.MSG,',',1),1),
INT(DB2MQ.GETCOL(T.MSG,',',2)),
INT(DB2MQ.GETCOL(T.MSG,',',3)),
INT(DB2MQ.GETCOL(T.MSG,',',4)),
DOUBLE(DB2MQ.GETCOL(T.MSG,',',5)),
FROM TABLE
DB2MQ.MQRECEIVALL('CDI','CDI',CDI_IN_MSG',1))AS T

Select c_name
from supplier_fed
where s_supply=:mqMsgKey

If part# new for supplier insert to local/remote as new
Else part# exist for supplier
If price < = existing price - update local/remote as accept
Else price increase-update local as review

Web Client
Message Formatter
Servlet

RunListener.java.Servlet

MQ Queue Informix

Oracle

DB2

WebSphere Federation Server
Federated Server

2,30,100,1000,1200,
2,40,935,487,57,23

Request_Status

Figure 58. Supplier prices can be updated

202 Application Development Guide for Federated Systems

Accessing information about the product

IBM has several methods for you to learn about products and services.

You can find the latest information on the Web:

http://www.ibm.com/software/data/sw-bycategory/subcategory/SWB50.html

To access product documentation, go to publib.boulder.ibm.com/infocenter/
db2luw/v9r5/topic/.

You can order IBM publications online or through your local IBM representative.

v To order publications online, go to the IBM Publications Center at

www.ibm.com/shop/publications/order.

v To order publications by telephone in the United States, call 1-800-879-2755.

To find your local IBM representative, go to the IBM Directory of Worldwide

Contacts at www.ibm.com/planetwide.

Providing comments on the documentation

Please send any comments that you have about this information or other

documentation.

Your feedback helps IBM to provide quality information. You can use any of the

following methods to provide comments:

v Send your comments using the online readers’ comment form at

www.ibm.com/software/awdtools/rcf/.

v Send your comments by e-mail to comments@us.ibm.com. Include the name of

the product, the version number of the product, and the name and part number

of the information (if applicable). If you are commenting on specific text, please

include the location of the text (for example, a title, a table number, or a page

number).

© Copyright IBM Corp. 2005, 2007 203

http://www.ibm.com/software/data/sw-bycategory/subcategory/SWB50.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide
http://www.ibm.com/software/awdtools/rcf/

204 Application Development Guide for Federated Systems

Accessible documentation

Documentation is provided in XHTML format, which is viewable in most Web

browsers.

XHTML allows you to view documentation according to the display preferences

that you set in your browser. It also allows you to use screen readers and other

assistive technologies.

Syntax diagrams are provided in dotted decimal format. This format is available

only if you are accessing the online documentation using a screen reader.

© Copyright IBM Corp. 2005, 2007 205

206 Application Development Guide for Federated Systems

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing 2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2005, 2007 207

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003 U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

208 Application Development Guide for Federated Systems

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Trademarks

IBM trademarks and certain non-IBM trademarks are marked at their first

occurrence in this document.

See www.ibm.com/legal/copytrade.shtml for information about IBM trademarks.

The following terms are trademarks or registered trademarks of other companies:

Adobe®, the Adobe logo, PostScript®, the PostScript logo are either registered

trademarks or trademarks of Adobe Systems Incorporated in the United States,

and/or other countries.

Cell Broadband Engine™ is a trademark of Sony Computer Entertainment, Inc. in

the United States, other countries, or both and is used under license therefrom.

Intel®, Intel logo, Intel Inside® logo, Intel Centrino®, Intel Centrino logo, Celeron®,

Intel Xeon®, Intel SpeedStep®, Itanium® and Pentium® are trademarks of Intel

Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Microsoft, Windows, Windows NT and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

ITIL® is a registered trademark and a registered community trademark of the

Office of Government Commerce, and is registered in the U.S. Patent and

Trademark Office.

IT Infrastructure Library® is a registered trademark of the Central Computer and

Telecommunications Agency which is now part of the Office of Government

Commerce.

Other company, product or service names may be trademarks or service marks of

others.

Notices 209

http://www.ibm.com/legal/copytrade.shtml

210 Application Development Guide for Federated Systems

Index

A
accessibility 203, 205

application servers 114

asynchronous messaging
configuring MQListener 193

MQListener 185, 186, 191

authentication
Web services 123

automatic reloading
Web services 42, 43

B
beans

architecture 196

container-managed persistence 196,

198

definition 196

deploying 196, 198

entity
definition 196

mapping federated constructs to data

sources 198

session
definition 196

binding
SOAP messages 5

C
call

DADX operation 61

Call operation example
DADX 74

commands
Web services 83

D
DAD (Document Access Definition)

checker 146

sample 109

DADX (Document Access Definition

Extension)
checker 146

syntax 144

commands 83

creating 61, 62

defining the Web service 61

definition 41, 61

dynamic queries 85

dynamic query services examples 87

error checking 143, 145

groups 54

operations 61, 72

sample 46, 70, 107, 109

schema 81

syntax 62

updating 43

DADX environment checker
Document Access Definition (DAD)

files 148

Document Access Definition Extension

(DADX) files 149

error checking 144, 145

installing 143

namespace table files 147

web.xml 146

dadx.xsd 81

Data Server Developer Workbench 1, 41

DB2 SAMPLE database
DADX file 107

DB2 XML Extender 25, 34

DB2MQ 154

DB2MQ1PC 154

db2mqlsn
examples 191

db2mqlsn command
parameters 193

db2WebRowSet
dynamic query output type 93

dynamic query services
examples 99

db2xml.soaphttp()
SOAP function 128

DDL, transparent
description 195

defining the Web service
DADX operations 61

deploying
entity beans 196, 198

deploying a new group
Web services provider 53

developing applications
Web services 53

Document Access Definition (DAD)
troubleshooting 148

Document Access Definition Extension

(DADX)
XML schemas 15

Document Access Definition Extension

(DADX) files
troubleshooting 149

documentation
accessible 203, 205

documentation element
Document Access Definition Extension

(DADX) 46

dxxGenXML
Document Access Definition Extension

(DADX) 104

dynamic query services
examples 87, 99

operations 93

Web services provider 85

E
element_node

Document Access Definition Extension

(DADX) 62

encoding algorithm
Web services 83

encrypting messages
HTTPS 123

encryption
Web services 123

end points
Web services security 123

Enterprise JavaBeans 195

architecture 196

entity beans
container-managed persistence 196

definition 196

environment variables 125

error-checking
DADX environment checker 143, 144

DADX files 145, 149

Document Access Definition file 148

namespace table files 147

Web services 122

web.xml 146

examples 34

DADX files 70

dynamic query services 87, 99

MQListener 191

Web services consumer 142

F
federated systems

application design 195

finding Web services 47

G
GET binding

DADX files 43

getColumns
dynamic query services

operations 93

getTables
dynamic query services

operations 93

group.imports
Web services description language

(WSDL) 7

group.properties 54

automatic reloading 43

security 123

group.properties file
Web services 146

groups
Web services 54

© Copyright IBM Corp. 2005, 2007 211

H
HTTP

GET bindings 43

POST bindings 43

SOAP bindings 5

HTTPS encoding 123

I
inspecting Web services 47

installation requirements
WORF 23

integration solution 154

invoking
DADX Web services 61

J
Java 2 Enterprise Edition

application support 114, 195

federated systems 195

federated views 195

nicknames 195

JRas 116

L
legal notices 207

log4j 116

M
mapping

column definitions 15

materialized query tables
database design considerations 195

message queues 200, 201

WebSphere MQ 186

messaging
MQListener 194

using with database operations 185

Microsoft Visual Studio .NET
Web services interoperability 41

migrating from WORF 1, 41

MQ functions 156

MQ user-defined functions 154

MQListener 186

asynchronous messaging 185

configuration terms 193

configuring 185

message queues 194

MQLIstener
examples 191

N
namespace tables (NST)

error checking 146, 147

nicknames
beans 198

non-relational wrappers 125

NST (namespace tables)
error checking 146, 147

O
operations

dynamic query services 93

overriding
DADX file 70

P
parameters

DADX file 72

POST binding
DADX files 43

simple object access protocol 5

publishing
Web services 12, 120

Q
query operation, DADX

defining 61

example 74

R
Rational Web Developer for WebSphere

user-defined functions 130

RDB_node mapping
DADX file 70

request-and-reply communication
WebSphere MQ 180

resource files
DADX 54

resource-based deployment
Web services 42

retrieveXML
DADX operation 61

RetrieveXML operation example
DADX 74

S
screen readers 203, 205

secure sockets layer 125

security
Web services 123

session beans
definition 196

simple object access protocol
bindings 5, 43, 120

clients 1, 3

messages 125

messaging 7, 128

requesters 1, 3

requests 128

response 128

user-defined functions 128

SOAP binding 5

DADX files 43

SOAP UDFs 126

SQL mapping
DADX file 70

SQL operations
DADX file 80

stored procedures
using with MQListener 185

storeXML
DADX operation 61

StoreXML operation example
DADX 74

syntax
Document Access Definition Extension

(DADX) 62

T
tables

materialized query 195

task flow
Web services 53

tModel
UDDI element 45

tracing
Web services provider 116

trademarks 209

transparent DDL
description 195

troubleshooting
DADX files 149

Document Access Definition (DAD)

files 148

Web services 122

U
UDDI registration

WSDL 12

UDFs
installing 156

SOAP 126

WebSphere Studio 131

UDFs (user-defined functions)
DB2 MQ 177

Universal Discovery, Description, and

Integration (UDDI)
integration solution 12

Web services provider 120

update
DADX operation 61

Update operation example
DADX 74

user-defined functions (UDFs)
Web services consumer 125, 128, 130,

141

WebSphere MQ 153

W
Web applications

data sources 195

Web enabled applications
deploying 53

Web services
accessing 12

commands 83

consumer example 1, 3

creating 53

DADX file 61

defining 61

definition 41

description 7

discovering 120

212 Application Development Guide for Federated Systems

Web services (continued)
documentation element 46

encoding algorithm 83

error checking 146, 148, 149

example 107

features 42, 43

invoking 125

provider example 1, 3

sample 109

software requirements 23

Web services consumer
definition 1, 3

examples 142

user-defined functions 125, 128, 130,

141

Web services description language

(WSDL)
definition 7

generating 45

generating for UDDI 12

UDDI 12

Web services inspection language

document 47

Web services list page 47

Web services operations
dynamic query services 93

Web services provider 41

DADX 70

definition 1, 3

dynamic query services 85, 87, 93

error checking 143

groups 54

integration solution 1, 3

operations 80

security 123

testing 53

troubleshooting 122

XML Extender 104

XML schemas 81

web.xml file
error checking 146

WebSphere Application Server
integration solution 114

WebSphere Application Server Advanced

Edition 3

WebSphere MQ 154

DB2 functions
connecting applications 180

description 154

integration solution 177

message queues 185, 186

MQListener 194

queue manager 191

WebSphere MQ user-defined

functions 153

WORF
installing 23

troubleshooting 122

WSDL
definition 45

WSIL
Web services provider 47

X
XML

vocabulary 45

XML collections
DADX file 80

Web services 104

XML document hierarchy
Document Access Definition Extension

(DADX) 62

XML Extender 25, 34

Web services 104

XML schemas
definitions 15

simple type 72

Web services description language

(WSDL) 7

Index 213

214 Application Development Guide for Federated Systems

����

Printed in USA

SC19-1021-01

Sp
in
e
in
fo
rm
at
io
n:

 IB
M

In

fo
rm

at
io

n
In

te
gr

at
io

n
Ve

rs
io

n
9.

5
Ap

pl
ic

at
io

n
De

ve
lo

pm
en

t G
ui

de

fo

r F
ed

er
at

ed

Sy

st
em

s
�
�

�

	Contents
	Chapter 1. Overview of Web services application development
	Web services and information integration
	Web services components: provider and consumer
	Web services fundamentals
	SOAP binding
	Web services description language
	UDDI business registries
	WSDL for UDDI registration
	XML schema definitions

	Preparing the Web services environment on the Web Application Server
	Preparing the Web services environment in UNIX and Windows
	Preparing the Web services environment in z/OS or OS/390
	Preparing the Web services environment in iSeries

	Application server for DB2
	Installing the application server for DB2 in a federated server
	Starting and stopping the application server for DB2
	Installing Web services provider samples on the application server for DB2
	Installing Web applications on the application server for DB2

	Preparing to install the Web services provider
	Installing WORF to work with WebSphere Application Server Version 5 or later for Windows and UNIX
	Installing WORF on z/OS or OS/390
	Installing the Web services provider software requirements for Apache Jakarta Tomcat on UNIX and Windows
	Installing WORF on Apache Jakarta Tomcat
	Installing the Web services provider software requirements for Apache Jakarta Tomcat on iSeries
	Web services provider software requirements for OS/390 and z/OS

	Install the Web services provider examples
	Installing and deploying WORF examples on WebSphere Application Server Version 4.0.4 for z/OS or OS/390
	Deploying WORF examples on WebSphere Application Server Version 5.1 or later for Windows and UNIX
	Installing and deploying the WORF examples in iSeries
	Installing and deploying the WORF examples on Apache Jakarta Tomcat

	Migrating Web services to WebSphere Federation Server Version 9.1
	Migrating Web applications to work with WebSphere Federation Server Version 9.1

	Introduction to using DB2 as a Web services provider – WORF
	Web services provider features
	Resource-based deployment
	Web services automatic reloading
	Accessing the Web service with GET, POST, and SOAP bindings
	WSDL from a DADX file
	Web services documentation
	Web services that exist from Web services provider

	Chapter 2. Creating a Web services provider from a database
	Defining a group of Web services
	Defining the web.xml and group.properties files
	Defining the web.xml file
	Elements required in the web.xml file
	Defining the group.properties file
	Parameters for the group.properties file
	Sample servlet for iSeries

	Definition of a DADX file
	Defining the Web service with the document access definition extension file
	Syntax of the DADX file
	A simple DADX file
	Using overrides in the DADX file
	Declaring and referencing parameters in the DADX file
	DADX operation examples

	Web service provider operations used with DADX files
	XML schema for the DADX file
	Web services encoding algorithm
	Web services command reference

	Chapter 3. Dynamic database queries that use the Web services provider
	Configuring and running dynamic database queries as part of Web services provider
	Dynamic query services-example queries
	Dynamic query service operations in the Web services provider
	db2WebRowSet

	Chapter 4. Document type definition repository table
	DTD definitions for XML Extender
	XML collection operations
	Converting a document type definition to an XML schema

	Chapter 5. Testing Web services applications
	Verifying and testing Web services provider (WORF)
	Testing Web services applications – a scenario
	Testing the Web service
	Web services samples – PartOrders.dadx
	Installing a Web application that is used with the IBM Web Service SOAP provider engine
	Java 2 Enterprise Edition applications
	Preparing and creating the Web archive file
	Web services provider tracing
	Enabling tracing for the DB2 Web services provider-Apache Tomcat Version 4.0 or later Web application server
	Enabling tracing for the DB2 Web services provider–WebSphere application server
	Enabling tracing for the DB2 Web services provider-Rational Web Developer

	Publishing your Web services

	Administering and troubleshooting the Web services provider
	Using connection pooling to improve performance
	Troubleshooting Web services
	Security in DADX Web services

	Chapter 6. Web service consumer functions
	Installation of the Web services consumer user-defined functions
	Web services consumer user-defined functions
	Tracing Web services consumer events
	Web services consumer—using the WebSphere Studio User-Defined Function tool
	How to generate the user-defined functions from WebSphere Studio
	Using the Web services consumer UDFs
	Web services consumer examples

	Chapter 7. DADX environment checker
	Running the DADX environment checker
	DADX environment checker parameters
	Indicating errors and warnings in the output text file
	Error checking by the DADX environment checker
	Checking errors in the web.xml file
	Checking errors in the NST files
	Checking errors in the DAD files
	Checking errors in the DADX files

	Chapter 8. WebSphere MQ and DB2 User Defined Functions
	WebSphere MQ messaging interface
	Message handling and the MQ messaging interface
	Installing and using the DB2 WebSphere MQ functions
	Capabilities of DB2 WebSphere MQ functions
	Commit environment for DB2 WebSphere MQ functions
	Configuring the MQ messaging interface
	WebSphere MQ configuration parameters
	WebSphere MQ function messages
	WebSphere MQ messaging Services
	Messaging Policies
	Service points
	Policy definitions
	Migrating MQ user defined functions from the repository-based configuration to the table-based configuration

	Examples of MQPUBLISH and MQSUBSCRIBE
	DB2 WebSphere MQ functions as part of the DB2 transaction
	WebSphere MQ functions within DB2
	Application-to-application connectivity
	Tracing WebSphere MQ problems

	Chapter 9. MQListener in WebSphere Federation Server
	Asynchronous messaging in Information Integration
	Configuring and running MQListener
	Configuring MQListener to run in the DB2 environment
	Configuring WebSphere MQ for MQListener
	Configuring MQListener
	Creating a stored procedure to use with MQListener
	MQListener examples

	Parameters used in MQListener configuration
	WebSphere MQ queues used in MQListener

	Chapter 10. Developing applications that use federation
	Developing federated application with Java technology
	Advantages of enterprise beans in a federated system
	Enterprise beans in a federated system
	Creating and deploying a container-managed persistence bean

	Examples of federated applications
	Customer bid requests
	Supplier quote requests

	Accessing information about the product
	Providing comments on the documentation

	Accessible documentation
	Notices
	Trademarks

	Index

